#include #include "metawatchpaintengine.h" #include "metawatch.h" using namespace sowatch; QTM_USE_NAMESPACE #define SINGLE_LINE_UPDATE 0 const char MetaWatch::btnToWatch[8] = { 0, 1, 2, 3, 5, 6, -1, -1 }; const int MetaWatch::connectRetryTimes[] = { 5, 10, 30, 60, 120, 300 }; const quint8 MetaWatch::bitRevTable[16] = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 }; const quint16 MetaWatch::crcTable[256] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 }; #if 0 /* This snippet was used to build the table seen above. */ quint16 remainder; int dividend; quint8 bit; for (dividend = 0; dividend < 256; dividend++) { remainder = dividend << 8; for (bit = 8; bit > 0; bit--) { if (remainder & 0x8000) { remainder = (remainder << 1) ^ 0x1021; } else { remainder = (remainder << 1); } } if ((dividend % 8) == 0) { printf(",\n0x%04hx", remainder); } else { printf(", 0x%04hx", remainder); } } #endif MetaWatch::MetaWatch(ConfigKey* settings, QObject* parent) : Watch(parent), _settings(settings->getSubkey(QString(), this)), _idleTimer(new QTimer(this)), _ringTimer(new QTimer(this)), _watchTime(), _watchBattery(0), _watchBatteryAverage(0), _watchCharging(false), _currentMode(IdleMode), _paintMode(IdleMode), _paintEngine(0), _connectRetries(0), _connected(false), _connectTimer(new QTimer(this)), _connectAlignedTimer(new QSystemAlignedTimer(this)), _localDev(new QBluetoothLocalDevice(this)), _socket(0), _sendTimer(new QTimer(this)) { // Read current device settings connect(_settings, SIGNAL(subkeyChanged(QString)), SLOT(settingChanged(QString))); _address = QBluetoothAddress(settings->value("address").toString()); _notificationTimeout = settings->value("notification-timeout", 15).toInt(); _24hMode = settings->value("24h-mode", false).toBool(); _dayMonthOrder = settings->value("day-month-order", false).toBool(); _buttonNames << "A" << "B" << "C" << "D" << "E" << "F"; // Configure timers (but do not turn them on yet) _idleTimer->setInterval(_notificationTimeout * 1000); _idleTimer->setSingleShot(true); connect(_idleTimer, SIGNAL(timeout()), SIGNAL(idling())); _ringTimer->setInterval(DelayBetweenRings); connect(_ringTimer, SIGNAL(timeout()), SLOT(timedRing())); _connectTimer->setSingleShot(true); _connectAlignedTimer->setSingleShot(true); connect(_connectTimer, SIGNAL(timeout()), SLOT(timedReconnect())); connect(_connectAlignedTimer, SIGNAL(timeout()), SLOT(timedReconnect())); _sendTimer->setInterval(DelayBetweenMessages); connect(_sendTimer, SIGNAL(timeout()), SLOT(timedSend())); // Connect other signals connect(_localDev, SIGNAL(hostModeStateChanged(QBluetoothLocalDevice::HostMode)), SLOT(localDevModeChanged(QBluetoothLocalDevice::HostMode))); // Check to see if we can connect right away if (_localDev->hostMode() != QBluetoothLocalDevice::HostPoweredOff) { // Do an initial connection attempt after a short delay // (To give time for other plugins to initialize, etc.) scheduleConnect(); } else { qDebug() << "Not starting MetaWatch connection because BT is off"; } } MetaWatch::~MetaWatch() { if (_socket) { _socket->close(); delete _socket; } if (_paintEngine) { delete _paintEngine; } } QPaintEngine* MetaWatch::paintEngine() const { if (!_paintEngine) { _paintEngine = new MetaWatchPaintEngine(const_cast(this)); } return _paintEngine; } QString MetaWatch::model() const { return "metawatch"; } QStringList MetaWatch::buttons() const { return _buttonNames; } bool MetaWatch::isConnected() const { return _connected; } bool MetaWatch::busy() const { return !_connected || _socket->state() != QBluetoothSocket::ConnectedState || _toSend.size() > 20; } void MetaWatch::setDateTime(const QDateTime &dateTime) { Message msg(SetRealTimeClock, QByteArray(8, 0)); const QDate& date = dateTime.date(); const QTime& time = dateTime.time(); msg.data[0] = (date.year() & 0xFF00) >> 8; msg.data[1] = date.year() & 0xFF; msg.data[2] = date.month(); msg.data[3] = date.day(); // Qt week starts on Monday([1-7]), MetaWatch week starts on Sunday([0-6]). msg.data[4] = date.dayOfWeek() % 7; msg.data[5] = time.hour(); msg.data[6] = time.minute(); msg.data[7] = time.second(); send(msg); } void MetaWatch::queryDateTime() { Message msg(GetRealTimeClock); sendIfNotQueued(msg); } QDateTime MetaWatch::dateTime() const { return _watchTime; } void MetaWatch::queryBatteryLevel() { Message msg(ReadBatteryVoltage); sendIfNotQueued(msg); } int MetaWatch::batteryLevel() const { // TODO This "estimation" is quite awful, could be way more accurate. int level = (_watchBatteryAverage - 3500) / (4100-3500); if (level < 0) level = 0; if (level > 100) level = 100; return level; } void MetaWatch::queryCharging() { Message msg(ReadBatteryVoltage); sendIfNotQueued(msg); } bool MetaWatch::charging() const { return _watchCharging; } void MetaWatch::updateNotificationCount(Notification::Type type, int count) { Q_UNUSED(type); Q_UNUSED(count); // Default implementation does nothing } void MetaWatch::updateWeather(WeatherNotification *weather) { Q_UNUSED(weather); // Default implementation does nothing } void MetaWatch::displayIdleScreen() { _currentMode = IdleMode; _paintMode = IdleMode; _ringTimer->stop(); _idleTimer->stop(); setVibrateMode(false, 0, 0, 0); } void MetaWatch::displayNotification(Notification *notification) { _currentMode = NotificationMode; _paintMode = NotificationMode; if (notification->type() == Notification::CallNotification) { timedRing(); _ringTimer->start(); _idleTimer->stop(); } else { _ringTimer->stop(); setVibrateMode(true, VibrateLength, VibrateLength, 2); _idleTimer->start(); } } void MetaWatch::displayApplication() { _currentMode = ApplicationMode; _paintMode = ApplicationMode; _ringTimer->stop(); _idleTimer->stop(); } void MetaWatch::vibrate(int msecs) { setVibrateMode(true, msecs, 0, 1); } MetaWatch::Mode MetaWatch::currentMode() const { return _currentMode; } MetaWatch::Mode MetaWatch::paintTargetMode() const { return _paintMode; } QImage* MetaWatch::imageFor(Mode mode) { return &_image[mode]; } void MetaWatch::grabButton(Mode mode, Button button) { enableButton(mode, button, PressOnly); enableButton(mode, button, PressAndRelease); } void MetaWatch::ungrabButton(Mode mode, Button button) { disableButton(mode, button, PressOnly); disableButton(mode, button, PressAndRelease); } quint16 MetaWatch::calcCrc(const QByteArray &data, int size) { quint16 remainder = 0xFFFF; for (int i = 0; i < size; i++) { quint8 byte = data[i]; byte = (bitRevTable[byte & 0xF] << 4) | bitRevTable[(byte & 0xF0) >> 4]; remainder = crcTable[byte ^ (remainder >> 8)] ^ (remainder << 8); } return remainder; } quint16 MetaWatch::calcCrc(const Message& msg) { QByteArray data; const int msgSize = msg.data.size(); data.resize(msgSize + 4); data[0] = 0x01; data[1] = msgSize + 6; data[2] = msg.type; data[3] = msg.options; data.replace(4, msgSize, msg.data); return calcCrc(data, msgSize + 4); } void MetaWatch::scheduleConnect() { if (_connected || _connectAlignedTimer->isActive() || _connectTimer->isActive()) { // Already connected or already scheduled to connect. return; } _connectRetries = 0; _connectTimer->start(100); } void MetaWatch::scheduleRetryConnect() { if (_connected || _connectAlignedTimer->isActive() || _connectTimer->isActive()) { // Already connected or already scheduled to connect. return; } int timeToNextRetry; if (_connectRetries >= connectRetryTimesSize) { timeToNextRetry = connectRetryTimes[connectRetryTimesSize - 1]; } else { timeToNextRetry = connectRetryTimes[_connectRetries]; _connectRetries++; // Increase the number of connection attemps } qDebug() << "Backing off for" << timeToNextRetry << "seconds for next retry"; _connectAlignedTimer->start(timeToNextRetry / 2, timeToNextRetry * 2); if (_connectAlignedTimer->lastError() != QSystemAlignedTimer::NoError) { // Hopefully a future version of QSystemAlignedTimer implements this fallback // For now, we have to do it ourselves. qDebug() << "Note: using plain QTimer for retry"; _connectTimer->start(timeToNextRetry * 1000); } } void MetaWatch::unscheduleConnect() { _connectAlignedTimer->stop(); _connectTimer->stop(); } void MetaWatch::connectToWatch() { delete _socket; //Delete socket from previous connect if any. _socket = new QBluetoothSocket(QBluetoothSocket::RfcommSocket); connect(_socket, SIGNAL(connected()), SLOT(socketConnected())); connect(_socket, SIGNAL(disconnected()), SLOT(socketDisconnected())); connect(_socket, SIGNAL(readyRead()), SLOT(socketData())); connect(_socket, SIGNAL(error(QBluetoothSocket::SocketError)), SLOT(socketError(QBluetoothSocket::SocketError))); connect(_socket, SIGNAL(stateChanged(QBluetoothSocket::SocketState)), SLOT(socketState(QBluetoothSocket::SocketState))); _socket->connectToService(_address, 1, QIODevice::ReadWrite | QIODevice::Unbuffered); } void MetaWatch::send(const Message &msg) { _toSend.enqueue(msg); if (!_sendTimer->isActive()) { _sendTimer->start(); } } void MetaWatch::sendIfNotQueued(const Message& msg) { foreach (const Message& m, _toSend) { if (m.type == msg.type) { return; // Already on the queue, discard message. } } // Otherwise, send it as requested send(msg); } uint MetaWatch::nvalSize(NvalValue value) { switch (value) { case ReservedNval: case LinkKey: return 0; case IdleBufferConfiguration: return 1; case TimeFormat: case DateFormat: case DisplaySeconds: return 1; } return 0; } void MetaWatch::nvalWrite(NvalValue value, int data) { uint id = static_cast(value); int size = nvalSize(value); Q_ASSERT(size > 0); // Do a read operation first to get the current value // If the current value matches what we want, avoid rewriting it to flash. Message msg(NvalOperation, QByteArray(3, 0), 1); msg.data[0] = id & 0xFF; msg.data[1] = id >> 8; msg.data[2] = size; _nvals[value] = data; send(msg); } void MetaWatch::setVibrateMode(bool enable, uint on, uint off, uint cycles) { Message msg(SetVibrateMode, QByteArray(6, 0)); msg.data[0] = enable ? 1 : 0; msg.data[1] = on & 0xFF; msg.data[2] = on >> 8; msg.data[3] = off & 0xFF; msg.data[4] = off >> 8; msg.data[5] = cycles; send(msg); } void MetaWatch::updateLcdLine(Mode mode, const QImage& image, int line) { Message msg(WriteLcdBuffer, QByteArray(13, 0), (1 << 4) | (mode & 0xF)); const char * scanLine = (const char *) image.constScanLine(line); msg.data[0] = line; msg.data.replace(1, 12, scanLine, 12); send(msg); } void MetaWatch::updateLcdLines(Mode mode, const QImage& image, int lineA, int lineB) { Message msg(WriteLcdBuffer, QByteArray(26, 0), mode & 0xF); const char * scanLine = (const char *) image.constScanLine(lineA); msg.data[0] = lineA; msg.data.replace(1, 12, scanLine, 12); scanLine = (const char *) image.constScanLine(lineB); msg.data[13] = lineB; msg.data.replace(14, 12, scanLine, 12); send(msg); } void MetaWatch::updateLcdLines(Mode mode, const QImage& image, const QVector& lines) { int lineCount = lines.count(true); int lineA = -1; if (lineCount == 0) return; qDebug() << "sending" << lineCount << "rows to watch"; for (int line = 0; line < lines.size(); line++) { if (lines[line]) { lineCount--; #if SINGLE_LINE_UPDATE updateLcdLine(mode, image, line); continue; #endif if (lineA >= 0) { // We have a pair of lines to send. updateLcdLines(mode, image, lineA, line); lineA = -1; } else if (lineCount > 0) { // Still another line to send. lineA = line; } else { updateLcdLine(mode, image, line); break; // No more lines } } } } void MetaWatch::configureLcdIdleSystemArea(bool entireScreen) { Message msg(ConfigureLcdIdleBufferSize, QByteArray(26, 0)); msg.data[0] = entireScreen ? 1 : 0; send(msg); } void MetaWatch::updateLcdDisplay(Mode mode, bool copy) { Message msg(UpdateLcdDisplay, QByteArray(), (copy ? 0x10 : 0) | (mode & 0xF)); send(msg); } void MetaWatch::loadLcdTemplate(Mode mode, int templ) { Message msg(LoadLcdTemplate, QByteArray(1, templ), mode & 0xF); send(msg); } void MetaWatch::enableButton(Mode mode, Button button, ButtonPress press) { Message msg(EnableButton, QByteArray(5, 0)); Q_ASSERT(button >= 0 && button < 8); msg.data[0] = mode; msg.data[1] = btnToWatch[button]; msg.data[2] = press; msg.data[3] = ButtonEvent; // We create a custom event code that allows us to know what // the pressed button and the event code were. msg.data[4] = 0x80 | ((press << 4) & 0x30) | (button & 0xF); send(msg); } void MetaWatch::disableButton(Mode mode, Button button, ButtonPress press) { Message msg(DisableButton, QByteArray(3, 0)); Q_ASSERT(button >= 0 && button < 8); msg.data[0] = mode; msg.data[1] = btnToWatch[button]; msg.data[2] = press; send(msg); } void MetaWatch::handleMessage(const Message &msg) { switch (msg.type) { case GetDeviceTypeResponse: handleDeviceTypeMessage(msg); break; case GetRealTimeClockResponse: handleRealTimeClockMessage(msg); break; case NvalOperationResponse: handleNvalOperationMessage(msg); break; case StatusChangeEvent: handleStatusChangeMessage(msg); break; case ButtonEvent: handleButtonEventMessage(msg); break; case ReadBatteryVoltageResponse: handleBatteryVoltageMessage(msg); break; default: qWarning() << "Unknown message of type" << msg.type << "received"; break; } } void MetaWatch::handleDeviceTypeMessage(const Message &msg) { Q_ASSERT(msg.type == GetDeviceTypeResponse); if (msg.data.size() < 1) { qWarning() << "Short device type response"; } qDebug() << "got device type" << msg.data[0]; } void MetaWatch::handleRealTimeClockMessage(const Message &msg) { int year = ((msg.data[0] & 0xFF) << 8) | (msg.data[1] & 0xFF); int month = msg.data[2] & 0xFF; int day = msg.data[3] & 0xFF; QDate d(year, month, day); int hour = msg.data[5] & 0xFF; int minute = msg.data[6] & 0xFF; int second = msg.data[7] & 0xFF; QTime t(hour, minute, second); _watchTime = QDateTime(d, t); qDebug() << "got time from watch" << _watchTime; emit dateTimeChanged(); } void MetaWatch::handleNvalOperationMessage(const Message& msg) { Q_ASSERT(msg.type == NvalOperationResponse); // Nval operation response packet format is: // 2 bytes for id // Rest for contents if (msg.data.size() < 2) { qWarning() << "NVAL operation response too short"; } uint id = ((msg.data[1] & 0xFF) << 8) | (msg.data[0] & 0xFF); NvalValue value = static_cast(id); qDebug() << "nval operation response for value" << hex << value; switch (msg.options) { case 0: // Success { int got_size = msg.data.size() - 2; int size = nvalSize(value); if (got_size != size) { qWarning() << "Unexpected NVAL size" << got_size; return; } // Read it int data; switch (size) { case 1: data = msg.data[2]; break; default: qWarning() << "Yet to implement this nval size"; return; } // Check if there's a pending write for this nval. if (_nvals.contains(value)) { int new_data = _nvals[value]; qDebug() << "nval" << hex << value << "currently =" << dec << data << "is pending write to =" << new_data; if (new_data != data) { realNvalWrite(value, _nvals[value]); } else { qDebug() << " not rewriting it"; } _nvals.remove(value); } } break; case 1: // Failure qWarning() << "NVAL operation failed"; break; case 0x9: qWarning() << "NVAL operation failed: Identifier not found"; break; case 0xA: qWarning() << "NVAL operation failed: Operation failed"; break; case 0xC: qWarning() << "NVAL operation failed: Bad Item length"; break; default: qWarning() << "NVAL operation unknown response: " << msg.options; break; } } void MetaWatch::handleStatusChangeMessage(const Message &msg) { Q_UNUSED(msg); qDebug() << "got status change message"; } void MetaWatch::handleButtonEventMessage(const Message &msg) { if (!(msg.options & 0x80)) { // We didn't configure this button, reject. return; } ButtonPress press = static_cast((msg.options & 0x30) >> 4); int button = msg.options & 0xF; if (button >= 6) { qWarning() << "Unknown watch button" << button; return; } qDebug() << "button event" << button << " (" << press << ")"; if (press == PressOnly) { emit buttonPressed(button); } else if (press == PressAndRelease) { emit buttonReleased(button); } } void MetaWatch::handleBatteryVoltageMessage(const Message &msg) { Q_ASSERT(msg.type == ReadBatteryVoltageResponse); if (msg.data.size() < 6) { qWarning() << "Short battery voltage response:" << msg.data.size(); return; } _watchCharging = msg.data[1]; _watchBattery = ((msg.data[3] & 0xFF) << 8) | (msg.data[2] & 0xFF); _watchBatteryAverage = ((msg.data[5] & 0xFF) << 8) | (msg.data[4] & 0xFF); qDebug() << "got battery voltage" << _watchBattery << "mV " << "average" << _watchBatteryAverage << "mV " << (_watchCharging ? "charging" : "discharging"); emit chargingChanged(); emit batteryLevelChanged(); } void MetaWatch::settingChanged(const QString &key) { qDebug() << "Metawatch setting changed:" << key; if (key == "address") { _address = QBluetoothAddress(_settings->value(key).toString()); } else if (key == "notification-timeout") { _notificationTimeout = _settings->value(key, 15).toInt(); } else if (key == "day-month-order") { _dayMonthOrder = _settings->value(key, false).toBool(); if (isConnected()) { nvalWrite(DateFormat, _dayMonthOrder ? 1 : 0); } } else if (key == "24h-mode") { _24hMode = _settings->value(key, false).toBool(); if (isConnected()) { nvalWrite(TimeFormat, _24hMode ? 1 : 0); } } } void MetaWatch::localDevModeChanged(QBluetoothLocalDevice::HostMode state) { qDebug() << "Local bluetooth device mode changed to" << state; if (state == QBluetoothLocalDevice::HostPoweredOff) { // Host bluetooth was powered down // Assume the socket has been disconnected socketDisconnected(); // Cancel any pending connection attempts unscheduleConnect(); } else { // Host bluetooth might have been powered up if (!_connected) { scheduleConnect(); } } } void MetaWatch::socketConnected() { if (!_connected) { qDebug() << "connected"; _connected = true; _connectRetries = 0; _partialReceived.type = NoMessage; _partialReceived.data.clear(); _currentMode = IdleMode; _paintMode = IdleMode; // Configure the watch according to user preferences nvalWrite(TimeFormat, _24hMode ? 1 : 0); nvalWrite(DateFormat, _dayMonthOrder ? 1 : 0); // Sync watch date & time setDateTime(QDateTime::currentDateTime()); // Call the MetaWatch Model-specific setup routines handleWatchConnected(); emit connected(); } } void MetaWatch::socketDisconnected() { // Signal disconnection if necessary if (_connected) { qDebug() << "disconnected"; _connected = false; _toSend.clear(); _sendTimer->stop(); emit disconnected(); } // Setup reconnection attempt if necessary if (_localDev->hostMode() != QBluetoothLocalDevice::HostPoweredOff) { scheduleRetryConnect(); } } void MetaWatch::socketData() { realReceive(false); } void MetaWatch::socketError(QBluetoothSocket::SocketError error) { qWarning() << "Socket error:" << error; // Seems that sometimes a disconnection event may not be generated. socketDisconnected(); } void MetaWatch::socketState(QBluetoothSocket::SocketState error) { qDebug() << "socket is in" << error; } void MetaWatch::timedReconnect() { connectToWatch(); } void MetaWatch::timedSend() { if (_toSend.count() > 0) { realSend(_toSend.dequeue()); } if (_toSend.count() == 0) { _sendTimer->stop(); } } void MetaWatch::timedRing() { setVibrateMode(true, RingLength, RingLength, 3); } void MetaWatch::realNvalWrite(NvalValue value, int data) { int size = nvalSize(value); uint id = static_cast(value); Message msg(NvalOperation, QByteArray(3 + size, 0), 2); qDebug() << "nval" << hex << value << "will be written with" << dec << data; msg.data[0] = id & 0xFF; msg.data[1] = id >> 8; msg.data[2] = size; switch (size) { case 1: msg.data[3] = data & 0xFF; break; default: qWarning() << "NVAL size not yet handled"; return; } send(msg); } void MetaWatch::realSend(const Message &msg) { const int msgSize = msg.data.size(); QByteArray data; quint16 crc; Q_ASSERT(_connected && _socket); data.resize(msgSize + 6); data[0] = 0x01; data[1] = msgSize + 6; data[2] = msg.type; data[3] = msg.options; data.replace(4, msgSize, msg.data); crc = calcCrc(data, msgSize + 4); data[msgSize+4] = crc & 0xFF; data[msgSize+5] = crc >> 8; //qDebug() << "sending" << data.toHex(); _socket->write(data); } void MetaWatch::realReceive(bool block) { do { qint64 dataRead; qDebug() << "received" << _socket->bytesAvailable() << "bytes"; if (_partialReceived.type == 0) { /* Still not received even the packet type */ /* Receive the full header, 4 bytes. */ if (_socket->bytesAvailable() < 4 && !block) { /* Still not enough data available. */ return; /* Wait for more, if non blocking. */ } static const int HEADER_SIZE = 4; char header[HEADER_SIZE]; dataRead = _socket->read(header, HEADER_SIZE); if (dataRead < 4) { qWarning() << "Short read"; return; } else if (header[0] != 0x01) { qWarning() << "Header not found, trying to recover"; // Let's try to find the header in one of the four bits we read for (int i = 1; i < HEADER_SIZE; i++) { if (header[i] == 0x01) { // Header possibly found, try to recover by pushing // the partial header back into the buffer and retrying for (int j = HEADER_SIZE - 1; j >= i; j--) { _socket->ungetChar(header[j]); } } } // In any case, try to repeat. continue; } _partialReceived.type = static_cast(header[2]); _partialReceived.data.resize(header[1] - 6); _partialReceived.options = header[3]; qDebug() << "got header"; } /* We have the header; now, try to get the complete packet. */ if (_socket->bytesAvailable() < (_partialReceived.data.size() + 2) && !block) { return; /* Wait for more. */ } dataRead = _socket->read(_partialReceived.data.data(), _partialReceived.data.size()); if (dataRead < _partialReceived.data.size()) { qWarning() << "Short read"; return; } char tail[2]; dataRead = _socket->read(tail, 2); if (dataRead < 2) { qWarning() << "Short read"; return; } quint16 realCrc = calcCrc(_partialReceived); quint16 expectedCrc = tail[1] << 8 | (tail[0] & 0xFFU); if (realCrc == expectedCrc) { handleMessage(_partialReceived); } else { qWarning() << "CRC error?"; } // Prepare for the next packet _partialReceived.data.clear(); _partialReceived.type = NoMessage; } while (_socket->bytesAvailable() > 0 && !block); // Loop until there are no more messages, or we are blocking and have received one. }