diff options
author | Javier <dev.git@javispedro.com> | 2022-02-05 02:41:17 +0100 |
---|---|---|
committer | Javier <dev.git@javispedro.com> | 2022-02-05 02:41:17 +0100 |
commit | 176ec23dd48c50c87e5394b702e2cf0fe72957db (patch) | |
tree | 7137f296963e3a8638c24ca08c47e70d0456d2ec | |
parent | 4d13ee7785a4184cf2a349fdec1af6cf9f05bfdf (diff) | |
download | vmusic-176ec23dd48c50c87e5394b702e2cf0fe72957db.tar.gz vmusic-176ec23dd48c50c87e5394b702e2cf0fe72957db.zip |
add initial emu8k/SBAWE32 device using PCem's emu8k
-rw-r--r-- | Emu8000.cpp | 648 | ||||
-rw-r--r-- | Makefile | 20 | ||||
-rw-r--r-- | VMusicMainVM.cpp | 10 | ||||
-rw-r--r-- | emu8k.c | 2427 | ||||
-rw-r--r-- | emu8k.h | 69 | ||||
-rw-r--r-- | emu8k_internal.h | 815 |
6 files changed, 3983 insertions, 6 deletions
diff --git a/Emu8000.cpp b/Emu8000.cpp new file mode 100644 index 0000000..86dcb11 --- /dev/null +++ b/Emu8000.cpp @@ -0,0 +1,648 @@ +/* + * VirtualBox ExtensionPack Skeleton + * Copyright (C) 2006-2020 Oracle Corporation + * + * Permission is hereby granted, free of charge, to any person + * obtaining a copy of this software and associated documentation + * files (the "Software"), to deal in the Software without + * restriction, including without limitation the rights to use, + * copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following + * conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ + +/* + * VMusic - a VirtualBox extension pack with various music devices + * Copyright (C) 2022 Javier S. Pedro + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_ENABLED 1 +#define LOG_ENABLE_FLOW 1 +#define LOG_GROUP LOG_GROUP_DEV_SB16 + // Log level 3 is used for register reads/writes + // Log level 7 is used for all port in/out + // Log level 9 is used for all port in/out and PCM rendering +#include <VBox/vmm/pdmdev.h> +#include <VBox/AssertGuest.h> +#include <VBox/version.h> +#include <iprt/assert.h> +#include <iprt/file.h> +#include <iprt/mem.h> + +#include "emu8k.h" + +#ifndef IN_RING3 +#error "R3-only driver" +#endif + +#if RT_OPSYS == RT_OPSYS_LINUX +#include "pcmalsa.h" +typedef PCMOutAlsa PCMOutBackend; +#elif RT_OPSYS == RT_OPSYS_WINDOWS +#include "pcmwin.h" +typedef PCMOutWin PCMOutBackend; +#endif + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ + +#define EMU_DEFAULT_IO_BASE 0x620 // to match VirtualBox's SB16 @0x220 + +#define EMU_DEFAULT_OUT_DEVICE "default" +#define EMU_DEFAULT_SAMPLE_RATE 44100 /* Hz */ +#define EMU_NUM_CHANNELS 2 + +#define EMU_DEFAULT_ONBOARD_RAM 0x7000U /* KiB */ + +enum { + EMU_PORT_DATA0 = 0, + EMU_PORT_DATA0_LO = EMU_PORT_DATA0, + EMU_PORT_DATA0_HI = EMU_PORT_DATA0+2, + EMU_PORT_DATA1 = 0x400, + EMU_PORT_DATA1_LO = EMU_PORT_DATA1, + EMU_PORT_DATA1_HI = EMU_PORT_DATA1+2, + EMU_PORT_DATA2 = EMU_PORT_DATA1+2, // intentional overlap + EMU_PORT_DATA3 = 0x800, + EMU_PORT_POINTER = 0x802 +}; + +/** The saved state version. */ +#define EMU_SAVED_STATE_VERSION 1 + +/** Maximum number of sound samples render in one batch by render thread. */ +#define EMU_RENDER_BLOCK_TIME 5 /* in millisec */ + +/** The render thread will shutdown if this time passes since the last OPL register write. */ +#define EMU_RENDER_SUSPEND_TIMEOUT 5000 /* in millisec */ + +/** Device configuration & state. */ +typedef struct { + /* Device configuration. */ + /** Base port. */ + RTIOPORT uPort; + /** Sample rate for PCM output. */ + uint16_t uSampleRate; + /** Size of onboard RAM in KiB. */ + uint16_t uOnboardRAM; + /** Path to find ROM file. */ + R3PTRTYPE(char *) pszROMFile; + /** Device for PCM output. */ + R3PTRTYPE(char *) pszOutDevice; + + /* Runtime state. */ + /** Audio output device */ + PCMOutBackend pcmOut; + /** Thread that connects to PCM out, renders and pushes audio data. */ + RTTHREAD hRenderThread; + /** Buffer for the rendering thread to use, size defined by EMU_RENDER_BLOCK_TIME. */ + R3PTRTYPE(uint8_t *) pbRenderBuf; + /** Flag to signal render thread to shut down. */ + bool volatile fShutdown; + /** Flag from render thread indicated it has shutdown (e.g. due to error or timeout). */ + bool volatile fStopped; + /** (System clock) timestamp of last OPL chip access. */ + uint64_t tmLastWrite; + + /** To protect access to opl3_chip from the render thread and main thread. */ + RTCRITSECT critSect; + /** Handle to emu8k. */ + R3PTRTYPE(emu8k_t*) emu; + /** Contents of ROM file. */ + R3PTRTYPE(void*) rom; + + IOMIOPORTHANDLE hIoPorts[3]; +} EMUSTATE; +typedef EMUSTATE *PEMUSTATE; + +#ifndef VBOX_DEVICE_STRUCT_TESTCASE + +static inline uint64_t emuCalculateFramesFromMilli(PEMUSTATE pThis, uint64_t milli) +{ + uint64_t rate = pThis->uSampleRate; + return (rate * milli) / 1000; +} + +static inline size_t emuCalculateBytesFromFrames(PEMUSTATE pThis, uint64_t frames) +{ + NOREF(pThis); + return frames * sizeof(uint16_t) * EMU_NUM_CHANNELS; +} + +/** + * The render thread calls into the emulator to render audio frames, and then pushes them + * on the PCM output device. + * We rely on the PCM output device's blocking writes behavior to avoid running continously. + * A small block size (EMU_RENDER_BLOCK_TIME) is also used to give the main thread some + * opportunities to run. + * + * @callback_method_impl{FNRTTHREAD} + */ +static DECLCALLBACK(int) emuRenderThread(RTTHREAD ThreadSelf, void *pvUser) +{ + RT_NOREF(ThreadSelf); + PEMUSTATE pThis = (PEMUSTATE)pvUser; + PCMOutBackend *pPcmOut = &pThis->pcmOut; + + // Compute the max number of frames we can store on our temporary buffer. + int16_t *buf = (int16_t*) pThis->pbRenderBuf; + uint64_t buf_frames = emuCalculateFramesFromMilli(pThis, EMU_RENDER_BLOCK_TIME); + + Log(("emu: Starting render thread with buf_frames=%lld\n", buf_frames)); + + int rc = pPcmOut->open(pThis->pszOutDevice, pThis->uSampleRate, EMU_NUM_CHANNELS); + AssertLogRelRCReturn(rc, rc); + + while (!ASMAtomicReadBool(&pThis->fShutdown) + && ASMAtomicReadU64(&pThis->tmLastWrite) + EMU_RENDER_SUSPEND_TIMEOUT >= RTTimeSystemMilliTS()) { + Log9(("rendering %lld frames\n", buf_frames)); + + RTCritSectEnter(&pThis->critSect); + emu8k_render(pThis->emu, buf, buf_frames); + RTCritSectLeave(&pThis->critSect); + + Log9(("writing %lld frames\n", buf_frames)); + + ssize_t written_frames = pPcmOut->write(buf, buf_frames); + if (written_frames < 0) { + rc = written_frames; + AssertLogRelMsgFailedBreak(("emu: render thread write err=%Rrc\n", written_frames)); + } + + RTThreadYield(); + } + + int rcClose = pPcmOut->close(); + AssertLogRelRC(rcClose); + if (RT_SUCCESS(rc)) rc = rcClose; + + Log(("emu: Stopping render thread with rc=%Rrc\n", rc)); + + ASMAtomicWriteBool(&pThis->fStopped, true); + + return VINF_SUCCESS; +} + +/** Waits for the render thread to finish and reaps it. */ +static int emuReapRenderThread(PPDMDEVINS pDevIns, RTMSINTERVAL millies = 100) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + if (pThis->hRenderThread != NIL_RTTHREAD) { + int rc = RTThreadWait(pThis->hRenderThread, millies, NULL); + if (RT_SUCCESS(rc)) { + pThis->hRenderThread = NIL_RTTHREAD; + } else { + LogWarn(("emu%d: render thread did not terminate (%Rrc)\n", pDevIns->iInstance, rc)); + AssertRCReturn(rc, rc); + } + } + + return VINF_SUCCESS; +} + +/** Raises signal for render thread to stop; potentially waits for it. */ +static int emuStopRenderThread(PPDMDEVINS pDevIns, bool wait = false) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + if (pThis->hRenderThread == NIL_RTTHREAD) { + // Already stopped & reaped + return VINF_SUCCESS; + } + + // Raise the flag for the thread + ASMAtomicWriteBool(&pThis->fShutdown, true); + + if (wait) { + int rc = emuReapRenderThread(pDevIns, 30000); + AssertRCReturn(rc, rc); + } + + return VINF_SUCCESS; +} + +static void emuWakeRenderThread(PPDMDEVINS pDevIns) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + ASMAtomicWriteU64(&pThis->tmLastWrite, RTTimeSystemMilliTS()); + + // Reap any existing render thread if it had stopped + if (ASMAtomicReadBool(&pThis->fStopped)) { + int rc = emuReapRenderThread(pDevIns); + AssertLogRelRCReturnVoid(rc); + } else if (ASMAtomicReadBool(&pThis->fShutdown) + && pThis->hRenderThread != NIL_RTTHREAD) { + AssertLogRelMsgFailedReturnVoid(("can't wake render thread -- it's shutting down!\n")); + } + + // If there is no existing render thread, start a new one + if (pThis->hRenderThread == NIL_RTTHREAD) { + pThis->fShutdown = false; + pThis->fStopped = false; + + Log3(("Creating render thread\n")); + + int rc = RTThreadCreateF(&pThis->hRenderThread, emuRenderThread, pThis, 0, + RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, + "emu%u_render", pDevIns->iInstance); + AssertLogRelRCReturnVoid(rc); + } +} + +/** + * @callback_method_impl{FNIOMIOPORTNEWIN} + */ +static DECLCALLBACK(VBOXSTRICTRC) emuIoPortRead(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb) +{ + RT_NOREF(pvUser); + + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + switch (cb) { + case sizeof(uint8_t): + *pu32 = emu8k_inb(pThis->emu, port); + break; + case sizeof(uint16_t): + *pu32 = emu8k_inw(pThis->emu, port); + break; + case sizeof(uint32_t): + *pu32 = RT_MAKE_U32(emu8k_inw(pThis->emu, port), emu8k_inw(pThis->emu, port + sizeof(uint16_t))); + break; + default: + ASSERT_GUEST_MSG_FAILED(("port=0x%x cb=%u\n", port, cb)); + *pu32 = 0xff; + break; + } + + Log9Func(("read port 0x%X (%u): %#04x\n", port, cb, *pu32)); + + return VINF_SUCCESS; +} + +/** + * @callback_method_impl{FNIOMIOPORTNEWOUT} + */ +static DECLCALLBACK(VBOXSTRICTRC) emuIoPortWrite(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb) +{ + RT_NOREF(pvUser); + + Log9Func(("write port 0x%X (%u): %#04x\n", port, cb, u32)); + + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + RTCritSectEnter(&pThis->critSect); + + switch (cb) { + case sizeof(uint8_t): + emu8k_outb(pThis->emu, port, u32); + break; + case sizeof(uint16_t): + emu8k_outw(pThis->emu, port, u32); + break; + case sizeof(uint32_t): + emu8k_outw(pThis->emu, port, RT_LO_U16(u32)); + emu8k_outw(pThis->emu, port + sizeof(uint16_t), RT_HI_U16(u32)); + default: + ASSERT_GUEST_MSG_FAILED(("port=0x%x cb=%u\n", port, cb)); + break; + } + + RTCritSectLeave(&pThis->critSect); + + emuWakeRenderThread(pDevIns); + + return VINF_SUCCESS; +} + +# ifdef IN_RING3 + +/** + * @callback_method_impl{FNSSMDEVSAVEEXEC} + */ +static DECLCALLBACK(int) emuR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; + + // TODO: Save contents of ROM & RAM? + RT_NOREF(pSSM, pThis, pHlp); + + return 0; +} + +/** + * @callback_method_impl{FNSSMDEVLOADEXEC} + */ +static DECLCALLBACK(int) emuR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; + + Assert(uPass == SSM_PASS_FINAL); + NOREF(uPass); + + // TODO + RT_NOREF(pSSM, pThis, pHlp); + + pThis->tmLastWrite = RTTimeSystemMilliTS(); + + if (uVersion > EMU_SAVED_STATE_VERSION) + return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; + + return 0; +} + +/** + * @interface_method_impl{PDMDEVREG,pfnReset} + * + * @returns VBox status code. + * @param pDevIns The device instance data. + */ +static DECLCALLBACK(void) emuR3Reset(PPDMDEVINS pDevIns) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + RTCritSectEnter(&pThis->critSect); + emu8k_reset(pThis->emu); + RTCritSectLeave(&pThis->critSect); +} + +/** + * @interface_method_impl{PDMDEVREG,pfnSuspend} + */ +static DECLCALLBACK(void) emuR3Suspend(PPDMDEVINS pDevIns) +{ + emuStopRenderThread(pDevIns); +} + +/** + * @interface_method_impl{PDMDEVREG,pfnPowerOff} + */ +static DECLCALLBACK(void) emuR3PowerOff(PPDMDEVINS pDevIns) +{ + emuStopRenderThread(pDevIns); +} + +/** + * @interface_method_impl{PDMDEVREG,pfnConstruct} + */ +static DECLCALLBACK(int) emuR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) +{ + PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; + int rc; + + Assert(iInstance == 0); + + // Validate and read the configuration + PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "Port|OnboardRAM|ROMFile|OutDevice|SampleRate", ""); + + rc = pHlp->pfnCFGMQueryPortDef(pCfg, "Port", &pThis->uPort, EMU_DEFAULT_IO_BASE); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to query \"Port\" from the config")); + + rc = pHlp->pfnCFGMQueryU16Def(pCfg, "Port", &pThis->uOnboardRAM, EMU_DEFAULT_ONBOARD_RAM); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to query \"OnboardRAM\" from the config")); + + rc = pHlp->pfnCFGMQueryStringAlloc(pCfg, "ROMFile", &pThis->pszROMFile); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to query \"RomFile\" from the config")); + + rc = pHlp->pfnCFGMQueryStringAllocDef(pCfg, "OutDevice", &pThis->pszOutDevice, EMU_DEFAULT_OUT_DEVICE); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to query \"OutDevice\" from the config")); + + rc = pHlp->pfnCFGMQueryU16Def(pCfg, "SampleRate", &pThis->uSampleRate, EMU_DEFAULT_SAMPLE_RATE); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to query \"SampleRate\" from the config")); + + // Validate and read the ROM file + RTFILE fROM; + uint64_t uROMSize; + rc = RTFileOpen(&fROM, pThis->pszROMFile, RTFILE_O_READ | RTFILE_O_OPEN | RTFILE_O_DENY_WRITE); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to open ROMFile")); + + rc = RTFileQuerySize(fROM, &uROMSize); + if (RT_FAILURE(rc) || uROMSize != _1M) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("ROMFile is not of correct size (expecting 1MiB file)")); + + pThis->rom = RTMemAlloc(uROMSize); + AssertPtrReturn(pThis->rom, VERR_NO_MEMORY); + + rc = RTFileRead(fROM, pThis->rom, uROMSize, NULL); + if (RT_FAILURE(rc)) + return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to read ROMFile")); + + // Create the device + pThis->emu = emu8k_alloc(pThis->rom, pThis->uOnboardRAM); + AssertPtrReturn(pThis->emu, VERR_NO_MEMORY); + + // Initialize the device + emuR3Reset(pDevIns); + + /* Initialize now the buffer that will be used by the render thread. */ + size_t renderBlockSize = emuCalculateBytesFromFrames(pThis, emuCalculateFramesFromMilli(pThis, EMU_RENDER_BLOCK_TIME)); + pThis->pbRenderBuf = (uint8_t *) RTMemAlloc(renderBlockSize); + AssertPtrReturn(pThis->pbRenderBuf, VERR_NO_MEMORY); + + /* Prepare the render thread, but not create it yet. */ + pThis->fShutdown = false; + pThis->fStopped = false; + pThis->hRenderThread = NIL_RTTHREAD; + pThis->tmLastWrite = 0; + rc = RTCritSectInit(&pThis->critSect); + AssertRCReturn(rc, rc); + + // Register IO ports. + const RTIOPORT numPorts = sizeof(uint32_t); // Each port is a "doubleword" or at least 2 words. + rc = PDMDevHlpIoPortCreateFlagsAndMap(pDevIns, pThis->uPort + EMU_PORT_DATA0, numPorts, IOM_IOPORT_F_ABS, + emuIoPortWrite, emuIoPortRead, "EMU8000 Data0", NULL, &pThis->hIoPorts[0]); + AssertRCReturn(rc, rc); + rc = PDMDevHlpIoPortCreateFlagsAndMap(pDevIns, pThis->uPort + EMU_PORT_DATA1, numPorts, IOM_IOPORT_F_ABS, + emuIoPortWrite, emuIoPortRead, "EMU8000 Data1/2", NULL, &pThis->hIoPorts[1]); + AssertRCReturn(rc, rc); + rc = PDMDevHlpIoPortCreateFlagsAndMap(pDevIns, pThis->uPort + EMU_PORT_DATA3, numPorts, IOM_IOPORT_F_ABS, + emuIoPortWrite, emuIoPortRead, "EMU8000 Data3/Ptr", NULL, &pThis->hIoPorts[3]); + AssertRCReturn(rc, rc); + + /* + * Register saved state. + */ + rc = PDMDevHlpSSMRegister(pDevIns, EMU_SAVED_STATE_VERSION, sizeof(*pThis), emuR3SaveExec, emuR3LoadExec); + AssertRCReturn(rc, rc); + + LogRel(("emu8000#%i: Using %hu KiB of onboard RAM\n", iInstance, pThis->uOnboardRAM)); + + LogRel(("emu8000#%i: Configured on ports 0x%X-0x%X, 0x%X-0x%X, 0x%X-0x%X\n", iInstance, + pThis->uPort + EMU_PORT_DATA0, pThis->uPort + EMU_PORT_DATA0 + numPorts - 1, + pThis->uPort + EMU_PORT_DATA1, pThis->uPort + EMU_PORT_DATA1 + numPorts - 1, + pThis->uPort + EMU_PORT_DATA3, pThis->uPort + EMU_PORT_DATA3 + numPorts - 1)); + + return VINF_SUCCESS; +} + +/** + * @interface_method_impl{PDMDEVREG,pfnDestruct} + */ +static DECLCALLBACK(int) emuR3Destruct(PPDMDEVINS pDevIns) +{ + PEMUSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PEMUSTATE); + + /* Shutdown AND terminate the render thread. */ + emuStopRenderThread(pDevIns, true); + + if (pThis->pbRenderBuf) { + RTMemFree(pThis->pbRenderBuf); + pThis->pbRenderBuf = NULL; + } + + if (pThis->pszOutDevice) { + PDMDevHlpMMHeapFree(pDevIns, pThis->pszOutDevice); + pThis->pszOutDevice = NULL; + } + + if (pThis->emu) { + emu8k_free(pThis->emu); + pThis->emu = NULL; + } + + if (pThis->rom) { + RTMemFree(pThis->rom); + pThis->rom = NULL; + } + + return VINF_SUCCESS; +} + +# endif /* !IN_RING3 */ + + +/** + * The device registration structure. + */ +static const PDMDEVREG g_DeviceEmu = +{ + /* .u32Version = */ PDM_DEVREG_VERSION, + /* .uReserved0 = */ 0, + /* .szName = */ "emu8000", + /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_NEW_STYLE, + /* .fClass = */ PDM_DEVREG_CLASS_AUDIO, + /* .cMaxInstances = */ 1, + /* .uSharedVersion = */ 42, + /* .cbInstanceShared = */ sizeof(EMUSTATE), + /* .cbInstanceCC = */ 0, + /* .cbInstanceRC = */ 0, + /* .cMaxPciDevices = */ 0, + /* .cMaxMsixVectors = */ 0, + /* .pszDescription = */ "EMU8000.", +# if defined(IN_RING3) + /* .pszRCMod = */ "", + /* .pszR0Mod = */ "", + /* .pfnConstruct = */ emuR3Construct, + /* .pfnDestruct = */ emuR3Destruct, + /* .pfnRelocate = */ NULL, + /* .pfnMemSetup = */ NULL, + /* .pfnPowerOn = */ NULL, + /* .pfnReset = */ emuR3Reset, + /* .pfnSuspend = */ emuR3Suspend, + /* .pfnResume = */ NULL, + /* .pfnAttach = */ NULL, + /* .pfnDetach = */ NULL, + /* .pfnQueryInterface = */ NULL, + /* .pfnInitComplete = */ NULL, + /* .pfnPowerOff = */ emuR3PowerOff, + /* .pfnSoftReset = */ NULL, + /* .pfnReserved0 = */ NULL, + /* .pfnReserved1 = */ NULL, + /* .pfnReserved2 = */ NULL, + /* .pfnReserved3 = */ NULL, + /* .pfnReserved4 = */ NULL, + /* .pfnReserved5 = */ NULL, + /* .pfnReserved6 = */ NULL, + /* .pfnReserved7 = */ NULL, +# elif defined(IN_RING0) + /* .pfnEarlyConstruct = */ NULL, + /* .pfnConstruct = */ NULL, + /* .pfnDestruct = */ NULL, + /* .pfnFinalDestruct = */ NULL, + /* .pfnRequest = */ NULL, + /* .pfnReserved0 = */ NULL, + /* .pfnReserved1 = */ NULL, + /* .pfnReserved2 = */ NULL, + /* .pfnReserved3 = */ NULL, + /* .pfnReserved4 = */ NULL, + /* .pfnReserved5 = */ NULL, + /* .pfnReserved6 = */ NULL, + /* .pfnReserved7 = */ NULL, +# elif defined(IN_RC) + /* .pfnConstruct = */ NULL, + /* .pfnReserved0 = */ NULL, + /* .pfnReserved1 = */ NULL, + /* .pfnReserved2 = */ NULL, + /* .pfnReserved3 = */ NULL, + /* .pfnReserved4 = */ NULL, + /* .pfnReserved5 = */ NULL, + /* .pfnReserved6 = */ NULL, + /* .pfnReserved7 = */ NULL, +# else +# error "Not in IN_RING3, IN_RING0 or IN_RC!" +# endif + /* .u32VersionEnd = */ PDM_DEVREG_VERSION +}; + +# ifdef VBOX_IN_EXTPACK_R3 + +/** + * @callback_method_impl{FNPDMVBOXDEVICESREGISTER} + */ +extern "C" DECLEXPORT(int) VBoxDevicesRegister(PPDMDEVREGCB pCallbacks, uint32_t u32Version) +{ + AssertLogRelMsgReturn(u32Version >= VBOX_VERSION, + ("u32Version=%#x VBOX_VERSION=%#x\n", u32Version, VBOX_VERSION), + VERR_EXTPACK_VBOX_VERSION_MISMATCH); + AssertLogRelMsgReturn(pCallbacks->u32Version == PDM_DEVREG_CB_VERSION, + ("pCallbacks->u32Version=%#x PDM_DEVREG_CB_VERSION=%#x\n", pCallbacks->u32Version, PDM_DEVREG_CB_VERSION), + VERR_VERSION_MISMATCH); + + return pCallbacks->pfnRegister(pCallbacks, &g_DeviceEmu); +} + +# endif /* !VBOX_IN_EXTPACK_R3 */ + +#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */ @@ -13,14 +13,19 @@ OUTOSDIR:=$(OUTDIR)/$(OS).$(ARCH) # Files for each library ADLIBR3OBJ:=$(OBJOSDIR)/Adlib.o $(OBJOSDIR)/opl3.o -MPU401R3OBJ:=$(OBJOSDIR)/Mpu401.o ADLIBR3LIBS:= +MPU401R3OBJ:=$(OBJOSDIR)/Mpu401.o MPU401R3LIBS:= +EMU8000R3OBJ:=$(OBJOSDIR)/Emu8000.o $(OBJOSDIR)/emu8k.o +EMU8000R3LIBS:= + ifeq "$(OS)" "linux" ADLIBR3OBJ+=$(OBJOSDIR)/pcmalsa.o -MPU401R3OBJ+=$(OBJOSDIR)/midialsa.o ADLIBR3LIBS+=-lasound +MPU401R3OBJ+=$(OBJOSDIR)/midialsa.o MPU401R3LIBS+=-lasound +EMU8000R3OBJ+=$(OBJOSDIR)/pcmalsa.o +EMU8000R3LIBS+=-lasound else ifeq "$(OS)" "win" ADLIBR3OBJ+=$(OBJOSDIR)/pcmwin.o MPU401R3OBJ+=$(OBJOSDIR)/midiwin.o @@ -60,14 +65,14 @@ endif all: build -build: $(OUTOSDIR)/VMusicMain.$(SO) $(OUTOSDIR)/VMusicMainVM.$(SO) $(OUTOSDIR)/AdlibR3.$(SO) $(OUTOSDIR)/Mpu401R3.$(SO) +build: $(OUTOSDIR)/VMusicMain.$(SO) $(OUTOSDIR)/VMusicMainVM.$(SO) $(OUTOSDIR)/AdlibR3.$(SO) $(OUTOSDIR)/Mpu401R3.$(SO) $(OUTOSDIR)/Emu8000R3.$(SO) $(OUTDIR) $(OBJDIR) $(OBJOSDIR) $(OUTOSDIR): %: mkdir -p $@ $(OBJOSDIR)/%.o: %.cpp | $(OBJOSDIR) $(CXX) -c -O2 -g -pipe -fPIC -m64 $(VBOX_CXXFLAGS) $(VBOX_DEFINES) -o $@ $< - + $(OBJOSDIR)/%.o: %.c | $(OBJOSDIR) $(CC) -c -O2 -g -pipe -fPIC -m64 $(VBOX_CFLAGS) $(VBOX_DEFINES) -o $@ $< @@ -83,9 +88,12 @@ $(OUTOSDIR)/AdlibR3.$(SO): $(ADLIBR3OBJ) | $(OUTOSDIR) $(OUTOSDIR)/Mpu401R3.$(SO): $(MPU401R3OBJ) | $(OUTOSDIR) $(CXX) -shared -fPIC -m64 $(VBOX_LDFLAGS) -o $@ $+ $(VBOX_LIBS) $(MPU401R3LIBS) +$(OUTOSDIR)/Emu8000R3.$(SO): $(EMU8000R3OBJ) | $(OUTOSDIR) + $(CXX) -shared -fPIC -m64 $(VBOX_LDFLAGS) -o $@ $+ $(VBOX_LIBS) $(EMU8000R3LIBS) + $(OUTDIR)/ExtPack.xml: ExtPack.xml install -m 0644 $< $@ - + $(OUTDIR)/ExtPack.signature: echo "todo" > $@ @@ -101,5 +109,5 @@ strip: clean: rm -rf $(OUTDIR) $(OBJDIR) VMusic.vbox-extpack - + .PHONY: all build clean strip pack diff --git a/VMusicMainVM.cpp b/VMusicMainVM.cpp index 7308720..5623d5c 100644 --- a/VMusicMainVM.cpp +++ b/VMusicMainVM.cpp @@ -91,6 +91,16 @@ static DECLCALLBACK(int) vMusicExtPackVM_VMConfigureVMM(PCVBOXEXTPACKVMREG pThi rc = CFGMR3InsertString(pCfgMine, "Path", szPath); AssertRCReturn(rc, rc); + // Likewise for Emu8000 module + rc = g_pHlp->pfnFindModule(g_pHlp, "Emu8000R3", NULL, VBOXEXTPACKMODKIND_R3, szPath, sizeof(szPath), NULL); + if (RT_FAILURE(rc)) + return rc; + + rc = CFGMR3InsertNode(pCfgDevices, "Emu8000", &pCfgMine); + AssertRCReturn(rc, rc); + rc = CFGMR3InsertString(pCfgMine, "Path", szPath); + AssertRCReturn(rc, rc); + return VINF_SUCCESS; } @@ -0,0 +1,2427 @@ +/*
+ * PCem - IBM PC emulator
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/*
+ * Portions:
+ * VMusic - a VirtualBox extension pack with various music devices
+ * Copyright (C) 2022 Javier S. Pedro
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <math.h>
+
+#define LOG_ENABLED 1
+#define LOG_ENABLE_FLOW 1
+#define LOG_GROUP LOG_GROUP_DEV_SB16
+#include <VBox/log.h>
+#include <iprt/assert.h>
+#include <iprt/string.h>
+#include <iprt/mem.h>
+
+#include "emu8k_internal.h"
+
+#define pclog(...) LogFlow((__VA_ARGS__))
+
+#if !defined FILTER_INITIAL && !defined FILTER_MOOG && !defined FILTER_CONSTANT
+//#define FILTER_INITIAL
+#define FILTER_MOOG
+//#define FILTER_CONSTANT
+#endif
+
+#if !defined RESAMPLER_LINEAR && !defined RESAMPLER_CUBIC
+//#define RESAMPLER_LINEAR
+#define RESAMPLER_CUBIC
+#endif
+
+//#define EMU8K_DEBUG_REGISTERS
+
+char* PORT_NAMES[][8] =
+ {
+ /* Data 0 ( 0x620/0x622) */
+ { "AWE_CPF",
+ "AWE_PTRX",
+ "AWE_CVCF",
+ "AWE_VTFT",
+ "Unk-620-4",
+ "Unk-620-5",
+ "AWE_PSST",
+ "AWE_CSL",
+ },
+ /* Data 1 0xA20 */
+ { "AWE_CCCA",
+ 0,
+ /*
+ "AWE_HWCF4"
+ "AWE_HWCF5"
+ "AWE_HWCF6"
+ "AWE_HWCF7"
+ "AWE_SMALR"
+ "AWE_SMARR"
+ "AWE_SMALW"
+ "AWE_SMARW"
+ "AWE_SMLD"
+ "AWE_SMRD"
+ "AWE_WC"
+ "AWE_HWCF1"
+ "AWE_HWCF2"
+ "AWE_HWCF3"
+ */
+ 0,//"AWE_INIT1",
+ 0,//"AWE_INIT3",
+ "AWE_ENVVOL",
+ "AWE_DCYSUSV",
+ "AWE_ENVVAL",
+ "AWE_DCYSUS",
+ },
+ /* Data 2 0xA22 */
+ { "AWE_CCCA",
+ 0,
+ 0,//"AWE_INIT2",
+ 0,//"AWE_INIT4",
+ "AWE_ATKHLDV",
+ "AWE_LFO1VAL",
+ "AWE_ATKHLD",
+ "AWE_LFO2VAL",
+ },
+ /* Data 3 0xE20 */
+ { "AWE_IP",
+ "AWE_IFATN",
+ "AWE_PEFE",
+ "AWE_FMMOD",
+ "AWE_TREMFRQ",
+ "AWE_FM2FRQ2",
+ 0,
+ 0,
+ },
+ };
+
+enum
+{
+ ENV_STOPPED = 0,
+ ENV_DELAY = 1,
+ ENV_ATTACK = 2,
+ ENV_HOLD = 3,
+ //ENV_DECAY = 4,
+ ENV_SUSTAIN = 5,
+ //ENV_RELEASE = 6,
+ ENV_RAMP_DOWN = 7,
+ ENV_RAMP_UP = 8
+};
+
+static int random_helper = 0;
+static int dmareadbit = 0;
+static int dmawritebit = 0;
+
+
+/* cubic and linear tables resolution. Note: higher than 10 does not improve the result. */
+#define CUBIC_RESOLUTION_LOG 10
+#define CUBIC_RESOLUTION (1<<CUBIC_RESOLUTION_LOG)
+/* cubic_table coefficients. */
+static float cubic_table[CUBIC_RESOLUTION * 4];
+
+/* conversion from current pitch to linear frequency change (in 32.32 fixed point). */
+static int64_t freqtable[65536];
+/* Conversion from initial attenuation to 16 bit unsigned lineal amplitude (currently only a way to update volume target register) */
+static int32_t attentable[256];
+/* Conversion from envelope dbs (once rigth shifted) (0 = 0dBFS, 65535 = -96dbFS and silence ) to 16 bit unsigned lineal amplitude,
+ * to convert to current volume. (0 to 65536) */
+static int32_t env_vol_db_to_vol_target[65537];
+/* Same as above, but to convert amplitude (once rigth shifted) (0 to 65536) to db (0 = 0dBFS, 65535 = -96dbFS and silence ).
+ * it is needed so that the delay, attack and hold phase can be added to initial attenuation and tremolo */
+static int32_t env_vol_amplitude_to_db[65537];
+/* Conversion from envelope herts (once right shifted) to octave . it is needed so that the delay, attack and hold phase can be
+ * added to initial pitch ,lfos pitch , initial filter and lfo filter */
+static int32_t env_mod_hertz_to_octave[65537];
+/* Conversion from envelope amount to time in samples. */
+static int32_t env_attack_to_samples[128];
+/* This table has been generated using the following formula:
+ * Get the amount of dBs that have to be added each sample to reach 96dBs in the amount
+ * of time determined by the encoded value "i".
+ * float d = 1.0/((env_decay_to_millis[i]/96.0)*44.1);
+ * int result = round(d*21845);
+ * The multiplication by 21845 gives a minimum value of 1, and a maximum accumulated value of 1<<21
+ * The accumulated value has to be converted to amplitude, and that can be done with the
+ * env_vol_db_to_vol_target and shifting by 8
+ * In other words, the unit of the table is the 1/21845th of a dB per sample frame, to be added or
+ * substracted to the accumulating value_db of the envelope. */
+static int32_t env_decay_to_dbs_or_oct[128] =
+ {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32,
+ 33, 34, 36, 38, 39, 41, 43, 45, 49, 51, 53, 55, 58, 60, 63, 66,
+ 69, 72, 75, 78, 82, 85, 89, 93, 97, 102, 106, 111, 116, 121, 126, 132,
+ 138, 144, 150, 157, 164, 171, 179, 186, 195, 203, 212, 222, 232, 243, 253, 264,
+ 276, 288, 301, 315, 328, 342, 358, 374, 390, 406, 425, 444, 466, 485, 506, 528,
+ 553, 580, 602, 634, 660, 689, 721, 755, 780, 820, 849, 897, 932, 970, 1012, 1057,
+ 1106, 1160, 1219, 1285, 1321, 1399, 1441, 1534, 1585, 1640, 1698, 1829, 1902, 1981, 2068, 2162
+ };
+/* The table "env_decay_to_millis" is based on the table "decay_time_tbl" found in the freebsd/linux
+ * AWE32 driver.
+ * I tried calculating it using the instructions in awe32p10 from Judge Dredd, but the formula there
+ * is wrong.
+ *
+static int32_t env_decay_to_millis[128] = {
+0, 45120, 22614, 15990, 11307, 9508, 7995, 6723, 5653, 5184, 4754, 4359, 3997, 3665, 3361, 3082,
+2828, 2765, 2648, 2535, 2428, 2325, 2226, 2132, 2042, 1955, 1872, 1793, 1717, 1644, 1574, 1507,
+1443, 1382, 1324, 1267, 1214, 1162, 1113, 1066, 978, 936, 897, 859, 822, 787, 754, 722,
+691, 662, 634, 607, 581, 557, 533, 510, 489, 468, 448, 429, 411, 393, 377, 361,
+345, 331, 317, 303, 290, 278, 266, 255, 244, 234, 224, 214, 205, 196, 188, 180,
+172, 165, 158, 151, 145, 139, 133, 127, 122, 117, 112, 107, 102, 98, 94, 90,
+86, 82, 79, 75, 72, 69, 66, 63, 61, 58, 56, 53, 51, 49, 47, 45,
+43, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 26, 25, 24, 23, 22,
+};
+*/
+
+/* Table represeting the LFO waveform (signed 16bits with 32768 max int. >> 15 to move back to +/-1 range). */
+static int32_t lfotable[65536];
+/* Table to transform the speed parameter to emu8k_mem_internal_t range. */
+static int64_t lfofreqtospeed[256];
+
+/* LFO used for the chorus. a sine wave.(signed 16bits with 32768 max int. >> 15 to move back to +/-1 range). */
+static double chortable[65536];
+
+static const int REV_BUFSIZE_STEP = 242;
+
+/* These lines come from the awe32faq, describing the NRPN control for the initial filter
+ * where it describes a linear increment filter instead of an octave-incremented one.
+ * NRPN LSB 21 (Initial Filter Cutoff)
+ * Range : [0, 127]
+ * Unit : 62Hz
+ * Filter cutoff from 100Hz to 8000Hz
+
+ * This table comes from the awe32faq, describing the NRPN control for the filter Q.
+ * I don't know if is meant to be interpreted as the actual measured output of the
+ * filter or what. Especially, I don't understand the "low" and "high" ranges.
+ * What is otherwise documented is that the Q ranges from 0dB to 24dB and the attenuation
+ * is half of the Q ( i.e. for 12dB Q, attenuate the input signal with -6dB)
+Coeff Low Fc(Hz)Low Q(dB)High Fc(kHz)High Q(dB)DC Attenuation(dB)
+* 0 92 5 Flat Flat -0.0
+* 1 93 6 8.5 0.5 -0.5
+* 2 94 8 8.3 1 -1.2
+* 3 95 10 8.2 2 -1.8
+* 4 96 11 8.1 3 -2.5
+* 5 97 13 8.0 4 -3.3
+* 6 98 14 7.9 5 -4.1
+* 7 99 16 7.8 6 -5.5
+* 8 100 17 7.7 7 -6.0
+* 9 100 19 7.5 9 -6.6
+* 10 100 20 7.4 10 -7.2
+* 11 100 22 7.3 11 -7.9
+* 12 100 23 7.2 13 -8.5
+* 13 100 25 7.1 15 -9.3
+* 14 100 26 7.1 16 -10.1
+* 15 100 28 7.0 18 -11.0
+*
+* Attenuation as above, codified in amplitude.*/
+static int32_t filter_atten[16] =
+ {
+ 65536, 61869, 57079, 53269, 49145, 44820, 40877, 34792, 32845, 30653, 28607,
+ 26392, 24630, 22463, 20487, 18470
+ };
+
+/*Coefficients for the filters for a defined Q and cutoff.*/
+static int32_t filt_coeffs[16][256][3];
+
+#define READ16_SWITCH(addr, var) switch ((addr) & 2) \
+ { \
+ case 0: ret = (var) & 0xffff; break; \
+ case 2: ret = ((var) >> 16) & 0xffff; break; \
+ }
+
+#define WRITE16_SWITCH(addr, var, val) switch ((addr) & 2) \
+ { \
+ case 0: var = (var & 0xffff0000) | (val); break; \
+ case 2: var = (var & 0x0000ffff) | ((val) << 16); break; \
+ }
+
+#ifdef EMU8K_DEBUG_REGISTERS
+static uint32_t last_read = 0;
+static uint32_t last_write = 0;
+static uint32_t rep_count_r = 0;
+static uint32_t rep_count_w = 0;
+
+# define READ16(addr, var) READ16_SWITCH(addr, var) \
+ { \
+ const char *name=0; \
+ switch(addr&0xF02) \
+ { \
+ case 0x600: case 0x602: \
+ name = PORT_NAMES[0][emu8k->cur_reg]; \
+ break; \
+ case 0xA00: \
+ name = PORT_NAMES[1][emu8k->cur_reg]; \
+ break; \
+ case 0xA02: \
+ name = PORT_NAMES[2][emu8k->cur_reg]; \
+ break; \
+ } \
+ if (name == 0) \
+ { \
+ /*pclog("EMU8K READ %04X-%02X(%d): %04X\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice, emu8k->cur_voice,ret);*/ \
+ } \
+ else \
+ { \
+ pclog("EMU8K READ %s(%d) (%d): %04X\n",name, (addr&0x2), emu8k->cur_voice, ret); \
+ }\
+ }
+# define WRITE16(addr, var, val) WRITE16_SWITCH(addr, var, val) \
+ { \
+ const char *name=0; \
+ switch(addr&0xF02) \
+ { \
+ case 0x600: case 0x602: \
+ name = PORT_NAMES[0][emu8k->cur_reg]; \
+ break; \
+ case 0xA00: \
+ name = PORT_NAMES[1][emu8k->cur_reg]; \
+ break; \
+ case 0xA02: \
+ name = PORT_NAMES[2][emu8k->cur_reg]; \
+ break; \
+ } \
+ if (name == 0) \
+ { \
+ /*pclog("EMU8K WRITE %04X-%02X(%d): %04X\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice,emu8k->cur_voice, val);*/ \
+ } \
+ else \
+ { \
+ pclog("EMU8K WRITE %s(%d) (%d): %04X\n",name, (addr&0x2), emu8k->cur_voice,val); \
+ }\
+ }
+
+#else
+# define READ16(addr, var) READ16_SWITCH(addr, var)
+# define WRITE16(addr, var, val) WRITE16_SWITCH(addr, var, val)
+#endif //EMU8K_DEBUG_REGISTERS
+
+static inline int16_t EMU8K_READ(emu8k_t* emu8k, uint32_t addr)
+{
+ const emu8k_mem_pointers_t addrmem = {{ addr }};
+ return emu8k->ram_pointers[addrmem.hb_address][addrmem.lw_address];
+}
+
+static inline int16_t EMU8K_READ_INTERP_LINEAR(emu8k_t* emu8k, uint32_t int_addr, uint16_t fract)
+{
+ /* The interpolation in AWE32 used a so-called patented 3-point interpolation
+ * ( I guess some sort of spline having one point before and one point after).
+ * Also, it has the consequence that the playback is delayed by one sample.
+ * I simulate the "one sample later" than the address with addr+1 and addr+2
+ * instead of +0 and +1 */
+ int16_t dat1 = EMU8K_READ(emu8k, int_addr + 1);
+ int32_t dat2 = EMU8K_READ(emu8k, int_addr + 2);
+ dat1 += ((dat2 - (int32_t)dat1) * fract) >> 16;
+ return dat1;
+}
+
+static inline int32_t EMU8K_READ_INTERP_CUBIC(emu8k_t* emu8k, uint32_t int_addr, uint16_t fract)
+{
+ /*Since there are four floats in the table for each fraction, the position is 16byte aligned. */
+ fract >>= 16 - CUBIC_RESOLUTION_LOG;
+ fract <<= 2;
+
+ /* TODO: I still have to verify how this works, but I think that
+ * the card could use two oscillators (usually 31 and 32) where it would
+ * be writing the OPL3 output, and to which, chorus and reverb could be applied to get
+ * those effects for OPL3 sounds.*/
+// if ((addr & EMU8K_FM_MEM_ADDRESS) == EMU8K_FM_MEM_ADDRESS) {}
+
+ /* This is cubic interpolation.
+ * Not the same than 3-point interpolation, but a better approximation than linear
+ * interpolation.
+ * Also, it takes into account the "Note that the actual audio location is the point
+ * 1 word higher than this value due to interpolation offset".
+ * That's why the pointers are 0, 1, 2, 3 and not -1, 0, 1, 2 */
+ int32_t dat2 = EMU8K_READ(emu8k, int_addr + 1);
+ const float* table = &cubic_table[fract];
+ const int32_t dat1 = EMU8K_READ(emu8k, int_addr);
+ const int32_t dat3 = EMU8K_READ(emu8k, int_addr + 2);
+ const int32_t dat4 = EMU8K_READ(emu8k, int_addr + 3);
+ /* Note: I've ended using float for the table values to avoid some cases of integer overflow. */
+ dat2 = dat1 * table[0] + dat2 * table[1] + dat3 * table[2] + dat4 * table[3];
+ return dat2;
+}
+
+static inline void EMU8K_WRITE(emu8k_t* emu8k, uint32_t addr, uint16_t val)
+{
+ addr &= EMU8K_MEM_ADDRESS_MASK;
+ if (!emu8k->ram || addr < EMU8K_RAM_MEM_START || addr >= EMU8K_FM_MEM_ADDRESS)
+ return;
+
+ /* It looks like if an application writes to a memory part outside of the available
+ * amount on the card, it wraps, and opencubicplayer uses that to detect the amount
+ * of memory, as opposed to simply check at the address that it has just tried to write. */
+ while (addr >= emu8k->ram_end_addr)
+ addr -= emu8k->ram_end_addr - EMU8K_RAM_MEM_START;
+
+ emu8k->ram[addr - EMU8K_RAM_MEM_START] = val;
+}
+
+uint16_t emu8k_inw(emu8k_t *emu8k, uint16_t addr)
+{
+ uint16_t ret = 0xffff;
+
+#ifdef EMU8K_DEBUG_REGISTERS
+ if (addr == 0xE22)
+ {
+ pclog("EMU8K READ POINTER: %d\n",
+ ((0x80 | ((random_helper + 1) & 0x1F)) << 8) | (emu8k->cur_reg << 5) | emu8k->cur_voice);
+ }
+ else if ((addr&0xF00) == 0x600)
+ {
+ /* These are automatically reported by READ16 */
+ if (rep_count_r>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_r);
+ rep_count_r=0;
+ }
+ last_read=0;
+ }
+ else if ((addr&0xF00) == 0xA00 && emu8k->cur_reg == 0)
+ {
+ /* These are automatically reported by READ16 */
+ if (rep_count_r>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_r);
+ rep_count_r=0;
+ }
+ last_read=0;
+ }
+ else if ((addr&0xF00) == 0xA00 && emu8k->cur_reg == 1)
+ {
+ uint32_t tmpz = ((addr&0xF00) << 16)|(emu8k->cur_reg<<5);
+ if (tmpz != last_read)
+ {
+ if (rep_count_r>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_r);
+ rep_count_r=0;
+ }
+ last_read=tmpz;
+ pclog("EMU8K READ RAM I/O or configuration or clock \n");
+ }
+ //pclog("EMU8K READ %04X-%02X(%d/%d)\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice, emu8k->cur_reg, emu8k->cur_voice);
+ }
+ else if ((addr&0xF00) == 0xA00 && (emu8k->cur_reg == 2 || emu8k->cur_reg == 3))
+ {
+ uint32_t tmpz = ((addr&0xF00) << 16);
+ if (tmpz != last_read)
+ {
+ if (rep_count_r>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_r);
+ rep_count_r=0;
+ }
+ last_read=tmpz;
+ pclog("EMU8K READ INIT \n");
+ }
+ //pclog("EMU8K READ %04X-%02X(%d/%d)\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice, emu8k->cur_reg, emu8k->cur_voice);
+ }
+ else
+ {
+ uint32_t tmpz = (addr << 16)|(emu8k->cur_reg<<5)| emu8k->cur_voice;
+ if (tmpz != last_read)
+ {
+ char* name = 0;
+ uint16_t val = 0xBAAD;
+ if (addr == 0xA20)
+ {
+ name = PORT_NAMES[1][emu8k->cur_reg];
+ switch (emu8k->cur_reg)
+ {
+ case 2: val = emu8k->init1[emu8k->cur_voice]; break;
+ case 3: val = emu8k->init3[emu8k->cur_voice]; break;
+ case 4: val = emu8k->voice[emu8k->cur_voice].envvol; break;
+ case 5: val = emu8k->voice[emu8k->cur_voice].dcysusv; break;
+ case 6: val = emu8k->voice[emu8k->cur_voice].envval; break;
+ case 7: val = emu8k->voice[emu8k->cur_voice].dcysus; break;
+ }
+ }
+ else if (addr == 0xA22)
+ {
+ name = PORT_NAMES[2][emu8k->cur_reg];
+ switch (emu8k->cur_reg)
+ {
+ case 2: val = emu8k->init2[emu8k->cur_voice]; break;
+ case 3: val = emu8k->init4[emu8k->cur_voice]; break;
+ case 4: val = emu8k->voice[emu8k->cur_voice].atkhldv; break;
+ case 5: val = emu8k->voice[emu8k->cur_voice].lfo1val; break;
+ case 6: val = emu8k->voice[emu8k->cur_voice].atkhld; break;
+ case 7: val = emu8k->voice[emu8k->cur_voice].lfo2val; break;
+ }
+ }
+ else if (addr == 0xE20)
+ {
+ name = PORT_NAMES[3][emu8k->cur_reg];
+ switch (emu8k->cur_reg)
+ {
+ case 0: val = emu8k->voice[emu8k->cur_voice].ip; break;
+ case 1: val = emu8k->voice[emu8k->cur_voice].ifatn; break;
+ case 2: val = emu8k->voice[emu8k->cur_voice].pefe; break;
+ case 3: val = emu8k->voice[emu8k->cur_voice].fmmod; break;
+ case 4: val = emu8k->voice[emu8k->cur_voice].tremfrq; break;
+ case 5: val = emu8k->voice[emu8k->cur_voice].fm2frq2;break;
+ case 6: val = 0xffff; break;
+ case 7: val = 0x1c | ((emu8k->id & 0x0002) ? 0xff02 : 0); break;
+ }
+ }
+ if (rep_count_r>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_r);
+ }
+ if (name == 0)
+ {
+ pclog("EMU8K READ %04X-%02X(%d/%d): %04X\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice, emu8k->cur_reg, emu8k->cur_voice,val);
+ }
+ else
+ {
+ pclog("EMU8K READ %s (%d): %04X\n",name,emu8k->cur_voice, val);
+ }
+
+ rep_count_r=0;
+ last_read=tmpz;
+ }
+ rep_count_r++;
+ }
+#endif // EMU8K_DEBUG_REGISTERS
+
+ switch (addr & 0xF02)
+ {
+ case 0x600:
+ case 0x602: /*Data0. also known as BLASTER+0x400 and EMU+0x000 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].cpf);
+ return ret;
+
+ case 1:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].ptrx);
+ return ret;
+
+ case 2:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].cvcf);
+ return ret;
+
+ case 3:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].vtft);
+ return ret;
+
+ case 4:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].unknown_data0_4);
+ return ret;
+
+ case 5:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].unknown_data0_5);
+ return ret;
+
+ case 6:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].psst);
+ return ret;
+
+ case 7:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].csl);
+ return ret;
+ }
+ break;
+
+ case 0xA00: /*Data1. also known as BLASTER+0x800 and EMU+0x400 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].ccca);
+ return ret;
+
+ case 1:
+ switch (emu8k->cur_voice)
+ {
+ case 9:
+ READ16(addr, emu8k->hwcf4);
+ return ret;
+ case 10:
+ READ16(addr, emu8k->hwcf5);
+ return ret;
+ /* Actually, these two might be command words rather than registers, or some LFO position/buffer reset.*/
+ case 13:
+ READ16(addr, emu8k->hwcf6);
+ return ret;
+ case 14:
+ READ16(addr, emu8k->hwcf7);
+ return ret;
+
+ case 20:
+ READ16(addr, emu8k->smalr);
+ return ret;
+ case 21:
+ READ16(addr, emu8k->smarr);
+ return ret;
+ case 22:
+ READ16(addr, emu8k->smalw);
+ return ret;
+ case 23:
+ READ16(addr, emu8k->smarw);
+ return ret;
+
+ case 26:
+ {
+ uint16_t val = emu8k->smld_buffer;
+ emu8k->smld_buffer = EMU8K_READ(emu8k, emu8k->smalr);
+ emu8k->smalr = (emu8k->smalr + 1) & EMU8K_MEM_ADDRESS_MASK;
+ return val;
+ }
+
+ /*The EMU8000 PGM describes the return values of these registers as 'a VLSI error'*/
+ case 29: /*Configuration Word 1*/
+ return (emu8k->hwcf1 & 0xfe) | (emu8k->hwcf3 & 0x01);
+ case 30: /*Configuration Word 2*/
+ return ((emu8k->hwcf2 >> 4) & 0x0e) | (emu8k->hwcf1 & 0x01) | ((emu8k->hwcf3 & 0x02) ? 0x10 : 0) | ((emu8k->hwcf3 & 0x04) ? 0x40 : 0)
+ | ((emu8k->hwcf3 & 0x08) ? 0x20 : 0) | ((emu8k->hwcf3 & 0x10) ? 0x80 : 0);
+ case 31: /*Configuration Word 3*/
+ return emu8k->hwcf2 & 0x1f;
+ }
+ break;
+
+ case 2:
+ return emu8k->init1[emu8k->cur_voice];
+
+ case 3:
+ return emu8k->init3[emu8k->cur_voice];
+
+ case 4:
+ return emu8k->voice[emu8k->cur_voice].envvol;
+
+ case 5:
+ return emu8k->voice[emu8k->cur_voice].dcysusv;
+
+ case 6:
+ return emu8k->voice[emu8k->cur_voice].envval;
+
+ case 7:
+ return emu8k->voice[emu8k->cur_voice].dcysus;
+ }
+ break;
+
+ case 0xA02: /*Data2. also known as BLASTER+0x802 and EMU+0x402 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ READ16(addr, emu8k->voice[emu8k->cur_voice].ccca);
+ return ret;
+
+ case 1:
+ switch (emu8k->cur_voice)
+ {
+ case 9:
+ READ16(addr, emu8k->hwcf4);
+ return ret;
+ case 10:
+ READ16(addr, emu8k->hwcf5);
+ return ret;
+ /* Actually, these two might be command words rather than registers, or some LFO position/buffer reset. */
+ case 13:
+ READ16(addr, emu8k->hwcf6);
+ return ret;
+ case 14:
+ READ16(addr, emu8k->hwcf7);
+ return ret;
+
+ /* Simulating empty/full bits by unsetting it once read. */
+ case 20:
+ READ16(addr, emu8k->smalr | dmareadbit);
+ /* xor with itself to set to zero faster. */
+ dmareadbit ^= dmareadbit;
+ return ret;
+ case 21:
+ READ16(addr, emu8k->smarr | dmareadbit);
+ /* xor with itself to set to zero faster.*/
+ dmareadbit ^= dmareadbit;
+ return ret;
+ case 22:
+ READ16(addr, emu8k->smalw | dmawritebit);
+ /*xor with itself to set to zero faster.*/
+ dmawritebit ^= dmawritebit;
+ return ret;
+ case 23:
+ READ16(addr, emu8k->smarw | dmawritebit);
+ /*xor with itself to set to zero faster.*/
+ dmawritebit ^= dmawritebit;
+ return ret;
+
+ case 26:
+ {
+ uint16_t val = emu8k->smrd_buffer;
+ emu8k->smrd_buffer = EMU8K_READ(emu8k, emu8k->smarr);
+ emu8k->smarr = (emu8k->smarr + 1) & EMU8K_MEM_ADDRESS_MASK;
+ return val;
+ }
+ /*TODO: We need to improve the precision of this clock, since
+ it is used by programs to wait. Not critical, but should help reduce
+ the amount of calls and wait time */
+ case 27: /*Sample Counter ( 44Khz clock) */
+ return emu8k->wc;
+ }
+ break;
+
+ case 2:
+ return emu8k->init2[emu8k->cur_voice];
+
+ case 3:
+ return emu8k->init4[emu8k->cur_voice];
+
+ case 4:
+ return emu8k->voice[emu8k->cur_voice].atkhldv;
+
+ case 5:
+ return emu8k->voice[emu8k->cur_voice].lfo1val;
+
+ case 6:
+ return emu8k->voice[emu8k->cur_voice].atkhld;
+
+ case 7:
+ return emu8k->voice[emu8k->cur_voice].lfo2val;
+ }
+ break;
+
+ case 0xE00: /*Data3. also known as BLASTER+0xC00 and EMU+0x800 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ return emu8k->voice[emu8k->cur_voice].ip;
+
+ case 1:
+ return emu8k->voice[emu8k->cur_voice].ifatn;
+
+ case 2:
+ return emu8k->voice[emu8k->cur_voice].pefe;
+
+ case 3:
+ return emu8k->voice[emu8k->cur_voice].fmmod;
+
+ case 4:
+ return emu8k->voice[emu8k->cur_voice].tremfrq;
+
+ case 5:
+ return emu8k->voice[emu8k->cur_voice].fm2frq2;
+
+ case 6:
+ return 0xffff;
+
+ case 7: /*ID?*/
+ return 0x1c | ((emu8k->id & 0x0002) ? 0xff02 : 0);
+ }
+ break;
+
+ case 0xE02: /* Pointer. also known as BLASTER+0xC02 and EMU+0x802 */
+ /* LS five bits = channel number, next 3 bits = register number
+ * and MS 8 bits = VLSI test register.
+ * Impulse tracker tests the non variability of the LS byte that it has set, and the variability
+ * of the MS byte to determine that it really is an AWE32.
+ * cubic player has a similar code, where it waits until value & 0x1000 is nonzero, and then waits again until it changes to zero.*/
+ random_helper = (random_helper + 1) & 0x1F;
+ return ((0x80 | random_helper) << 8) | (emu8k->cur_reg << 5) | emu8k->cur_voice;
+ }
+ pclog("EMU8K READ : Unknown register read: %04X-%02X(%d/%d) \n", addr, (emu8k->cur_reg << 5) | emu8k->cur_voice, emu8k->cur_reg, emu8k->cur_voice);
+ return 0xffff;
+}
+
+void emu8k_outw(emu8k_t *emu8k, uint16_t addr, uint16_t val)
+{
+ /*TODO: I would like to not call this here, but i found it was needed or else cubic player would not finish opening (take a looot more of time than usual).
+ * Basically, being here means that the audio is generated in the emulation thread, instead of the audio thread.*/
+ // TODO emu8k_update(emu8k);
+
+#ifdef EMU8K_DEBUG_REGISTERS
+ if (addr == 0xE22)
+ {
+ //pclog("EMU8K WRITE POINTER: %d\n", val);
+ }
+ else if ((addr&0xF00) == 0x600)
+ {
+ /* These are automatically reported by WRITE16 */
+ if (rep_count_w>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_w);
+ rep_count_w=0;
+ }
+ last_write=0;
+ }
+ else if ((addr&0xF00) == 0xA00 && emu8k->cur_reg == 0)
+ {
+ /* These are automatically reported by WRITE16 */
+ if (rep_count_w>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_w);
+ rep_count_w=0;
+ }
+ last_write=0;
+ }
+ else if ((addr&0xF00) == 0xA00 && emu8k->cur_reg == 1)
+ {
+ uint32_t tmpz = ((addr&0xF00) << 16)|(emu8k->cur_reg<<5);
+ if (tmpz != last_write)
+ {
+ if (rep_count_w>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_w);
+ rep_count_w=0;
+ }
+ last_write=tmpz;
+ pclog("EMU8K WRITE RAM I/O or configuration \n");
+ }
+ //pclog("EMU8K WRITE %04X-%02X(%d/%d): %04X\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice,emu8k->cur_reg,emu8k->cur_voice, val);
+ }
+ else if ((addr&0xF00) == 0xA00 && (emu8k->cur_reg == 2 || emu8k->cur_reg == 3))
+ {
+ uint32_t tmpz = ((addr&0xF00) << 16);
+ if (tmpz != last_write)
+ {
+ if (rep_count_w>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_w);
+ rep_count_w=0;
+ }
+ last_write=tmpz;
+ pclog("EMU8K WRITE INIT \n");
+ }
+ //pclog("EMU8K WRITE %04X-%02X(%d/%d): %04X\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice,emu8k->cur_reg,emu8k->cur_voice, val);
+ }
+ else if (addr != 0xE22)
+ {
+ uint32_t tmpz = (addr << 16)|(emu8k->cur_reg<<5)| emu8k->cur_voice;
+ //if (tmpz != last_write)
+ if(1)
+ {
+ char* name = 0;
+ if (addr == 0xA20)
+ {
+ name = PORT_NAMES[1][emu8k->cur_reg];
+ }
+ else if (addr == 0xA22)
+ {
+ name = PORT_NAMES[2][emu8k->cur_reg];
+ }
+ else if (addr == 0xE20)
+ {
+ name = PORT_NAMES[3][emu8k->cur_reg];
+ }
+
+ if (rep_count_w>1)
+ {
+ pclog("EMU8K ...... for %d times\n", rep_count_w);
+ }
+ if (name == 0)
+ {
+ pclog("EMU8K WRITE %04X-%02X(%d/%d): %04X\n",addr,(emu8k->cur_reg)<<5|emu8k->cur_voice,emu8k->cur_reg,emu8k->cur_voice, val);
+ }
+ else
+ {
+ pclog("EMU8K WRITE %s (%d): %04X\n",name,emu8k->cur_voice, val);
+ }
+
+ rep_count_w=0;
+ last_write=tmpz;
+ }
+ rep_count_w++;
+ }
+#endif //EMU8K_DEBUG_REGISTERS
+
+ switch (addr & 0xF02)
+ {
+ case 0x600:
+ case 0x602: /*Data0. also known as BLASTER+0x400 and EMU+0x000 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ /* The docs says that this value is constantly updating, and it should have no actual effect. Actions should be done over ptrx */
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].cpf, val);
+ return;
+
+ case 1:
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].ptrx, val);
+ return;
+
+ case 2:
+ /* The docs says that this value is constantly updating, and it should have no actual effect. Actions should be done over vtft */
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].cvcf, val);
+ return;
+
+ case 3:
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].vtft, val);
+ return;
+
+ case 4:
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].unknown_data0_4, val);
+ return;
+
+ case 5:
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].unknown_data0_5, val);
+ return;
+
+ case 6:
+ {
+ emu8k_voice_t* emu_voice = &emu8k->voice[emu8k->cur_voice];
+ WRITE16(addr, emu_voice->psst, val);
+ /* TODO: Should we update only on MSB update, or this could be used as some sort of hack by applications? */
+ emu_voice->loop_start.int_address = emu_voice->psst & EMU8K_MEM_ADDRESS_MASK;
+ if (addr & 2)
+ {
+ emu_voice->vol_l = emu_voice->psst_pan;
+ emu_voice->vol_r = 255 - (emu_voice->psst_pan);
+ }
+ }
+ return;
+
+ case 7:
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].csl, val);
+ /* TODO: Should we update only on MSB update, or this could be used as some sort of hack by applications? */
+ emu8k->voice[emu8k->cur_voice].loop_end.int_address = emu8k->voice[emu8k->cur_voice].csl & EMU8K_MEM_ADDRESS_MASK;
+ return;
+ }
+ break;
+
+ case 0xA00: /*Data1. also known as BLASTER+0x800 and EMU+0x400 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ WRITE16(addr, emu8k->voice[emu8k->cur_voice].ccca, val);
+ /* TODO: Should we update only on MSB update, or this could be used as some sort of hack by applications? */
+ emu8k->voice[emu8k->cur_voice].addr.int_address = emu8k->voice[emu8k->cur_voice].ccca & EMU8K_MEM_ADDRESS_MASK;
+ return;
+
+ case 1:
+ switch (emu8k->cur_voice)
+ {
+ case 9:
+ WRITE16(addr, emu8k->hwcf4, val);
+ return;
+ case 10:
+ WRITE16(addr, emu8k->hwcf5, val);
+ return;
+ /* Actually, these two might be command words rather than registers, or some LFO position/buffer reset. */
+ case 13:
+ WRITE16(addr, emu8k->hwcf6, val);
+ return;
+ case 14:
+ WRITE16(addr, emu8k->hwcf7, val);
+ return;
+
+ case 20:
+ WRITE16(addr, emu8k->smalr, val);
+ return;
+ case 21:
+ WRITE16(addr, emu8k->smarr, val);
+ return;
+ case 22:
+ WRITE16(addr, emu8k->smalw, val);
+ return;
+ case 23:
+ WRITE16(addr, emu8k->smarw, val);
+ return;
+
+ case 26:
+ EMU8K_WRITE(emu8k, emu8k->smalw, val);
+ emu8k->smalw = (emu8k->smalw + 1) & EMU8K_MEM_ADDRESS_MASK;
+ return;
+
+ case 29:
+ emu8k->hwcf1 = val;
+ return;
+ case 30:
+ emu8k->hwcf2 = val;
+ return;
+ case 31:
+ emu8k->hwcf3 = val;
+ return;
+ }
+ break;
+
+ case 2:
+ emu8k->init1[emu8k->cur_voice] = val;
+ /* Skip if in first/second initialization step */
+ if (emu8k->init1[0] != 0x03FF)
+ {
+ switch (emu8k->cur_voice)
+ {
+ case 0x3:
+ emu8k->reverb_engine.out_mix = val & 0xFF;
+ break;
+ case 0x5:
+ {
+ int c;
+ for (c = 0; c < 8; c++)
+ {
+ emu8k->reverb_engine.allpass[c].feedback = (val & 0xFF) / ((float)0xFF);
+ }
+ }
+ break;
+ case 0x7:
+ emu8k->reverb_engine.link_return_type = (val == 0x8474) ? 1 : 0;
+ break;
+ case 0xF:
+ emu8k->reverb_engine.reflections[0].output_gain = ((val & 0xF0) >> 4) / 15.0;
+ break;
+ case 0x17:
+ emu8k->reverb_engine.reflections[1].output_gain = ((val & 0xF0) >> 4) / 15.0;
+ break;
+ case 0x1F:
+ emu8k->reverb_engine.reflections[2].output_gain = ((val & 0xF0) >> 4) / 15.0;
+ break;
+ case 0x9:
+ emu8k->reverb_engine.reflections[0].feedback = (val & 0xF) / 15.0;
+ break;
+ case 0xB: //emu8k->reverb_engine.reflections[0].feedback_r = (val&0xF)/15.0;
+ break;
+ case 0x11:
+ emu8k->reverb_engine.reflections[1].feedback = (val & 0xF) / 15.0;
+ break;
+ case 0x13: //emu8k->reverb_engine.reflections[1].feedback_r = (val&0xF)/15.0;
+ break;
+ case 0x19:
+ emu8k->reverb_engine.reflections[2].feedback = (val & 0xF) / 15.0;
+ break;
+ case 0x1B: //emu8k->reverb_engine.reflections[2].feedback_r = (val&0xF)/15.0;
+ break;
+ }
+ }
+ return;
+
+ case 3:
+ emu8k->init3[emu8k->cur_voice] = val;
+ /* Skip if in first/second initialization step */
+ if (emu8k->init1[0] != 0x03FF)
+ {
+ switch (emu8k->cur_voice)
+ {
+ case 9:
+ emu8k->chorus_engine.feedback = (val & 0xFF);
+ break;
+ case 12:
+ /* Limiting this to a sane value given our buffer. */
+ emu8k->chorus_engine.delay_samples_central = (val & 0x1FFF);
+ break;
+
+ case 1:
+ emu8k->reverb_engine.refl_in_amp = val & 0xFF;
+ break;
+ case 3: //emu8k->reverb_engine.refl_in_amp_r = val&0xFF;
+ break;
+ }
+ }
+ return;
+
+ case 4:
+ emu8k->voice[emu8k->cur_voice].envvol = val;
+ emu8k->voice[emu8k->cur_voice].vol_envelope.delay_samples = ENVVOL_TO_EMU_SAMPLES(val);
+ return;
+
+ case 5:
+ {
+ emu8k->voice[emu8k->cur_voice].dcysusv = val;
+ emu8k_envelope_t* const vol_env = &emu8k->voice[emu8k->cur_voice].vol_envelope;
+ int old_on = emu8k->voice[emu8k->cur_voice].env_engine_on;
+ emu8k->voice[emu8k->cur_voice].env_engine_on = DCYSUSV_GENERATOR_ENGINE_ON(val);
+
+ if (emu8k->voice[emu8k->cur_voice].env_engine_on &&
+ old_on != emu8k->voice[emu8k->cur_voice].env_engine_on)
+ {
+ if (emu8k->hwcf3 != 0x04)
+ {
+ /* This is a hack for some programs like Doom or cubic player 1.7 that don't initialize
+ the hwcfg and init registers (doom does not init the card at all. only tests the cfg registers) */
+ emu8k->hwcf3 = 0x04;
+ }
+
+ //reset lfos.
+ emu8k->voice[emu8k->cur_voice].lfo1_count.addr = 0;
+ emu8k->voice[emu8k->cur_voice].lfo2_count.addr = 0;
+ // Trigger envelopes
+ if (ATKHLDV_TRIGGER(emu8k->voice[emu8k->cur_voice].atkhldv))
+ {
+ vol_env->value_amp_hz = 0;
+ if (vol_env->delay_samples)
+ {
+ vol_env->state = ENV_DELAY;
+ }
+ else if (vol_env->attack_amount_amp_hz == 0)
+ {
+ vol_env->state = ENV_STOPPED;
+ }
+ else
+ {
+ vol_env->state = ENV_ATTACK;
+ /* TODO: Verify if "never attack" means eternal mute,
+ * or it means skip attack, go to hold".
+ if (vol_env->attack_amount == 0)
+ {
+ vol_env->value = (1 << 21);
+ vol_env->state = ENV_HOLD;
+ }*/
+ }
+ }
+
+ if (ATKHLD_TRIGGER(emu8k->voice[emu8k->cur_voice].atkhld))
+ {
+ emu8k_envelope_t* const mod_env = &emu8k->voice[emu8k->cur_voice].mod_envelope;
+ mod_env->value_amp_hz = 0;
+ mod_env->value_db_oct = 0;
+ if (mod_env->delay_samples)
+ {
+ mod_env->state = ENV_DELAY;
+ }
+ else if (mod_env->attack_amount_amp_hz == 0)
+ {
+ mod_env->state = ENV_STOPPED;
+ }
+ else
+ {
+ mod_env->state = ENV_ATTACK;
+ /* TODO: Verify if "never attack" means eternal start,
+ * or it means skip attack, go to hold".
+ if (mod_env->attack_amount == 0)
+ {
+ mod_env->value = (1 << 21);
+ mod_env->state = ENV_HOLD;
+ }*/
+ }
+ }
+ }
+
+
+ /* Converting the input in dBs to envelope value range. */
+ vol_env->sustain_value_db_oct = DCYSUSV_SUS_TO_ENV_RANGE(DCYSUSV_SUSVALUE_GET(val));
+ vol_env->ramp_amount_db_oct = env_decay_to_dbs_or_oct[DCYSUSV_DECAYRELEASE_GET(val)];
+ if (DCYSUSV_IS_RELEASE(val))
+ {
+ if (vol_env->state == ENV_DELAY || vol_env->state == ENV_ATTACK || vol_env->state == ENV_HOLD)
+ {
+ vol_env->value_db_oct = env_vol_amplitude_to_db[vol_env->value_amp_hz >> 5] << 5;
+ if (vol_env->value_db_oct > (1 << 21))
+ vol_env->value_db_oct = 1 << 21;
+ }
+
+ vol_env->state = (vol_env->value_db_oct >= vol_env->sustain_value_db_oct) ? ENV_RAMP_DOWN : ENV_RAMP_UP;
+ }
+ }
+ return;
+
+ case 6:
+ emu8k->voice[emu8k->cur_voice].envval = val;
+ emu8k->voice[emu8k->cur_voice].mod_envelope.delay_samples = ENVVAL_TO_EMU_SAMPLES(val);
+ return;
+
+ case 7:
+ {
+ //TODO: Look for a bug on delay (first trigger it works, next trigger it doesn't)
+ emu8k->voice[emu8k->cur_voice].dcysus = val;
+ emu8k_envelope_t* const mod_env = &emu8k->voice[emu8k->cur_voice].mod_envelope;
+ /* Converting the input in octaves to envelope value range. */
+ mod_env->sustain_value_db_oct = DCYSUS_SUS_TO_ENV_RANGE(DCYSUS_SUSVALUE_GET(val));
+ mod_env->ramp_amount_db_oct = env_decay_to_dbs_or_oct[DCYSUS_DECAYRELEASE_GET(val)];
+ if (DCYSUS_IS_RELEASE(val))
+ {
+ if (mod_env->state == ENV_DELAY || mod_env->state == ENV_ATTACK || mod_env->state == ENV_HOLD)
+ {
+ mod_env->value_db_oct = env_mod_hertz_to_octave[mod_env->value_amp_hz >> 9] << 9;
+ if (mod_env->value_db_oct >= (1 << 21))
+ mod_env->value_db_oct = (1 << 21) - 1;
+ }
+
+ mod_env->state = (mod_env->value_db_oct >= mod_env->sustain_value_db_oct) ? ENV_RAMP_DOWN : ENV_RAMP_UP;
+ }
+ }
+ return;
+ }
+ break;
+
+ case 0xA02: /*Data2. also known as BLASTER+0x802 and EMU+0x402 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ {
+ emu8k_voice_t* emu_voice = &emu8k->voice[emu8k->cur_voice];
+ WRITE16(addr, emu_voice->ccca, val);
+ emu_voice->addr.int_address = emu_voice->ccca & EMU8K_MEM_ADDRESS_MASK;
+ uint32_t paramq = CCCA_FILTQ_GET(emu_voice->ccca);
+ emu_voice->filt_att = filter_atten[paramq];
+ emu_voice->filterq_idx = paramq;
+ }
+ return;
+
+ case 1:
+ switch (emu8k->cur_voice)
+ {
+ case 9:
+ WRITE16(addr, emu8k->hwcf4, val);
+ /* Skip if in first/second initialization step */
+ if (emu8k->init1[0] != 0x03FF)
+ {
+ /*(1/256th of a 44Khz sample) */
+ /* clip the value to a reasonable value given our buffer */
+ int32_t tmp = emu8k->hwcf4 & 0x1FFFFF;
+ emu8k->chorus_engine.delay_offset_samples_right = ((double)tmp) / 256.0;
+ }
+ return;
+ case 10:
+ WRITE16(addr, emu8k->hwcf5, val);
+ /* Skip if in first/second initialization step */
+ if (emu8k->init1[0] != 0x03FF)
+ {
+ /* The scale of this value is unknown. I've taken it as milliHz.
+ * Another interpretation could be periods. (and so, Hz = 1/period)*/
+ double osc_speed = emu8k->hwcf5;//*1.316;
+#if 1 // milliHz
+ /*milliHz to lfotable samples.*/
+ osc_speed *= 65.536 / 44100.0;
+#elif 0 //periods
+ /* 44.1Khz ticks to lfotable samples.*/
+ osc_speed = 65.536/osc_speed;
+#endif
+ /*left shift 32bits for 32.32 fixed.point*/
+ osc_speed *= 65536.0 * 65536.0;
+ emu8k->chorus_engine.lfo_inc.addr = (uint64_t)osc_speed;
+ }
+ return;
+ /* Actually, these two might be command words rather than registers, or some LFO position/buffer reset.*/
+ case 13:
+ WRITE16(addr, emu8k->hwcf6, val);
+ return;
+ case 14:
+ WRITE16(addr, emu8k->hwcf7, val);
+ return;
+
+ case 20: /*Top 8 bits are for Empty (MT) bit or non-addressable.*/
+ WRITE16(addr, emu8k->smalr, val & 0xFF);
+ dmareadbit = 0x8000;
+ return;
+ case 21: /*Top 8 bits are for Empty (MT) bit or non-addressable.*/
+ WRITE16(addr, emu8k->smarr, val & 0xFF);
+ dmareadbit = 0x8000;
+ return;
+ case 22: /*Top 8 bits are for full bit or non-addressable.*/
+ WRITE16(addr, emu8k->smalw, val & 0xFF);
+ return;
+ case 23: /*Top 8 bits are for full bit or non-addressable.*/
+ WRITE16(addr, emu8k->smarw, val & 0xFF);
+ return;
+
+ case 26:
+ dmawritebit = 0x8000;
+ EMU8K_WRITE(emu8k, emu8k->smarw, val);
+ emu8k->smarw++;
+ return;
+ }
+ break;
+
+ case 2:
+ emu8k->init2[emu8k->cur_voice] = val;
+ /* Skip if in first/second initialization step */
+ if (emu8k->init1[0] != 0x03FF)
+ {
+ switch (emu8k->cur_voice)
+ {
+ case 0x14:
+ {
+ int multip = ((val & 0xF00) >> 8) + 18;
+ emu8k->reverb_engine.reflections[5].bufsize = multip * REV_BUFSIZE_STEP;
+ emu8k->reverb_engine.tailL.bufsize = (multip + 1) * REV_BUFSIZE_STEP;
+ if (emu8k->reverb_engine.link_return_type == 0)
+ {
+ emu8k->reverb_engine.tailR.bufsize = (multip + 1) * REV_BUFSIZE_STEP;
+ }
+ }
+ break;
+ case 0x16:
+ if (emu8k->reverb_engine.link_return_type == 1)
+ {
+ int multip = ((val & 0xF00) >> 8) + 18;
+ emu8k->reverb_engine.tailR.bufsize = (multip + 1) * REV_BUFSIZE_STEP;
+ }
+ break;
+ case 0x7:
+ emu8k->reverb_engine.reflections[3].output_gain = ((val & 0xF0) >> 4) / 15.0;
+ break;
+ case 0xf:
+ emu8k->reverb_engine.reflections[4].output_gain = ((val & 0xF0) >> 4) / 15.0;
+ break;
+ case 0x17:
+ emu8k->reverb_engine.reflections[5].output_gain = ((val & 0xF0) >> 4) / 15.0;
+ break;
+ case 0x1d:
+ {
+ int c;
+ for (c = 0; c < 6; c++)
+ {
+ emu8k->reverb_engine.reflections[c].damp1 = (val & 0xFF) / 255.0;
+ emu8k->reverb_engine.reflections[c].damp2 = (0xFF - (val & 0xFF)) / 255.0;
+ emu8k->reverb_engine.reflections[c].filterstore = 0;
+ }
+ emu8k->reverb_engine.damper.damp1 = (val & 0xFF) / 255.0;
+ emu8k->reverb_engine.damper.damp2 = (0xFF - (val & 0xFF)) / 255.0;
+ emu8k->reverb_engine.damper.filterstore = 0;
+ }
+ break;
+ case 0x1f: /* filter r */
+ break;
+ case 0x1:
+ emu8k->reverb_engine.reflections[3].feedback = (val & 0xF) / 15.0;
+ break;
+ case 0x3: //emu8k->reverb_engine.reflections[3].feedback_r = (val&0xF)/15.0;
+ break;
+ case 0x9:
+ emu8k->reverb_engine.reflections[4].feedback = (val & 0xF) / 15.0;
+ break;
+ case 0xb: //emu8k->reverb_engine.reflections[4].feedback_r = (val&0xF)/15.0;
+ break;
+ case 0x11:
+ emu8k->reverb_engine.reflections[5].feedback = (val & 0xF) / 15.0;
+ break;
+ case 0x13: //emu8k->reverb_engine.reflections[5].feedback_r = (val&0xF)/15.0;
+ break;
+ }
+ }
+ return;
+
+ case 3:
+ emu8k->init4[emu8k->cur_voice] = val;
+ /* Skip if in first/second initialization step */
+ if (emu8k->init1[0] != 0x03FF)
+ {
+ switch (emu8k->cur_voice)
+ {
+ case 0x3:
+ {
+ int32_t samples = ((val & 0xFF) * emu8k->chorus_engine.delay_samples_central) >> 8;
+ emu8k->chorus_engine.lfodepth_multip = samples;
+
+ }
+ break;
+
+ case 0x1F:
+ emu8k->reverb_engine.link_return_amp = val & 0xFF;
+ break;
+ }
+ }
+ return;
+
+ case 4:
+ {
+ emu8k->voice[emu8k->cur_voice].atkhldv = val;
+ emu8k_envelope_t* const vol_env = &emu8k->voice[emu8k->cur_voice].vol_envelope;
+ vol_env->attack_samples = env_attack_to_samples[ATKHLDV_ATTACK(val)];
+ if (vol_env->attack_samples == 0)
+ {
+ vol_env->attack_amount_amp_hz = 0;
+ }
+ else
+ {
+ /* Linear amplitude increase each sample. */
+ vol_env->attack_amount_amp_hz = (1 << 21) / vol_env->attack_samples;
+ }
+ vol_env->hold_samples = ATKHLDV_HOLD_TO_EMU_SAMPLES(val);
+ if (ATKHLDV_TRIGGER(val) && emu8k->voice[emu8k->cur_voice].env_engine_on)
+ {
+ /*TODO: I assume that "envelope trigger" is the same as new note
+ * (since changing the IP can be done when modulating pitch too) */
+ emu8k->voice[emu8k->cur_voice].lfo1_count.addr = 0;
+ emu8k->voice[emu8k->cur_voice].lfo2_count.addr = 0;
+
+ vol_env->value_amp_hz = 0;
+ if (vol_env->delay_samples)
+ {
+ vol_env->state = ENV_DELAY;
+ }
+ else if (vol_env->attack_amount_amp_hz == 0)
+ {
+ vol_env->state = ENV_STOPPED;
+ }
+ else
+ {
+ vol_env->state = ENV_ATTACK;
+ /* TODO: Verify if "never attack" means eternal mute,
+ * or it means skip attack, go to hold".
+ if (vol_env->attack_amount == 0)
+ {
+ vol_env->value = (1 << 21);
+ vol_env->state = ENV_HOLD;
+ }*/
+ }
+ }
+ }
+ return;
+
+ case 5:
+ emu8k->voice[emu8k->cur_voice].lfo1val = val;
+ /* TODO: verify if this is set once, or set every time. */
+ emu8k->voice[emu8k->cur_voice].lfo1_delay_samples = LFOxVAL_TO_EMU_SAMPLES(val);
+ return;
+
+ case 6:
+ {
+ emu8k->voice[emu8k->cur_voice].atkhld = val;
+ emu8k_envelope_t* const mod_env = &emu8k->voice[emu8k->cur_voice].mod_envelope;
+ mod_env->attack_samples = env_attack_to_samples[ATKHLD_ATTACK(val)];
+ if (mod_env->attack_samples == 0)
+ {
+ mod_env->attack_amount_amp_hz = 0;
+ }
+ else
+ {
+ /* Linear amplitude increase each sample. */
+ mod_env->attack_amount_amp_hz = (1 << 21) / mod_env->attack_samples;
+ }
+ mod_env->hold_samples = ATKHLD_HOLD_TO_EMU_SAMPLES(val);
+ if (ATKHLD_TRIGGER(val) && emu8k->voice[emu8k->cur_voice].env_engine_on)
+ {
+ mod_env->value_amp_hz = 0;
+ mod_env->value_db_oct = 0;
+ if (mod_env->delay_samples)
+ {
+ mod_env->state = ENV_DELAY;
+ }
+ else if (mod_env->attack_amount_amp_hz == 0)
+ {
+ mod_env->state = ENV_STOPPED;
+ }
+ else
+ {
+ mod_env->state = ENV_ATTACK;
+ /* TODO: Verify if "never attack" means eternal start,
+ * or it means skip attack, go to hold".
+ if (mod_env->attack_amount == 0)
+ {
+ mod_env->value = (1 << 21);
+ mod_env->state = ENV_HOLD;
+ }*/
+ }
+ }
+ }
+ return;
+
+ case 7:
+ emu8k->voice[emu8k->cur_voice].lfo2val = val;
+ emu8k->voice[emu8k->cur_voice].lfo2_delay_samples = LFOxVAL_TO_EMU_SAMPLES(val);
+
+ return;
+ }
+ break;
+
+ case 0xE00: /*Data3. also known as BLASTER+0xC00 and EMU+0x800 */
+ switch (emu8k->cur_reg)
+ {
+ case 0:
+ emu8k->voice[emu8k->cur_voice].ip = val;
+ emu8k->voice[emu8k->cur_voice].ptrx_pit_target = freqtable[val] >> 18;
+ return;
+
+ case 1:
+ {
+ emu8k_voice_t* const the_voice = &emu8k->voice[emu8k->cur_voice];
+ if ((val & 0xFF) == 0 && the_voice->cvcf_curr_volume == 0 && the_voice->vtft_vol_target == 0
+ && the_voice->dcysusv == 0x80 && the_voice->ip == 0)
+ {
+ // Patch to avoid some clicking noises with Impulse tracker or other software that sets
+ // different values to 0 to set noteoff, but here, 0 means no attenuation = full volume.
+ return;
+ }
+ the_voice->ifatn = val;
+ the_voice->initial_att = (((int32_t)the_voice->ifatn_attenuation << 21) / 0xFF);
+ the_voice->vtft_vol_target = attentable[the_voice->ifatn_attenuation];
+
+ the_voice->initial_filter = (((int32_t)the_voice->ifatn_init_filter << 21) / 0xFF);
+ if (the_voice->ifatn_init_filter == 0xFF)
+ {
+ the_voice->vtft_filter_target = 0xFFFF;
+ }
+ else
+ {
+ the_voice->vtft_filter_target = the_voice->initial_filter >> 5;
+ }
+ }
+ return;
+
+ case 2:
+ {
+ emu8k_voice_t* const the_voice = &emu8k->voice[emu8k->cur_voice];
+ the_voice->pefe = val;
+
+ int divider = (the_voice->pefe_modenv_filter_height < 0) ? 0x80 : 0x7F;
+ the_voice->fixed_modenv_filter_height = ((int32_t)the_voice->pefe_modenv_filter_height) * 0x4000 / divider;
+
+ divider = (the_voice->pefe_modenv_pitch_height < 0) ? 0x80 : 0x7F;
+ the_voice->fixed_modenv_pitch_height = ((int32_t)the_voice->pefe_modenv_pitch_height) * 0x4000 / divider;
+ }
+ return;
+
+ case 3:
+ {
+ emu8k_voice_t* const the_voice = &emu8k->voice[emu8k->cur_voice];
+ the_voice->fmmod = val;
+
+ int divider = (the_voice->fmmod_lfo1_filt_mod < 0) ? 0x80 : 0x7F;
+ the_voice->fixed_lfo1_filt_mod = ((int32_t)the_voice->fmmod_lfo1_filt_mod) * 0x4000 / divider;
+
+ divider = (the_voice->fmmod_lfo1_vibrato < 0) ? 0x80 : 0x7F;
+ the_voice->fixed_lfo1_vibrato = ((int32_t)the_voice->fmmod_lfo1_vibrato) * 0x4000 / divider;
+ }
+ return;
+
+ case 4:
+ {
+ emu8k_voice_t* const the_voice = &emu8k->voice[emu8k->cur_voice];
+ the_voice->tremfrq = val;
+ the_voice->lfo1_speed = lfofreqtospeed[the_voice->tremfrq_lfo1_freq];
+
+ int divider = (the_voice->tremfrq_lfo1_tremolo < 0) ? 0x80 : 0x7F;
+ the_voice->fixed_lfo1_tremolo = ((int32_t)the_voice->tremfrq_lfo1_tremolo) * 0x4000 / divider;
+ }
+ return;
+
+ case 5:
+ {
+ emu8k_voice_t* const the_voice = &emu8k->voice[emu8k->cur_voice];
+ the_voice->fm2frq2 = val;
+ the_voice->lfo2_speed = lfofreqtospeed[the_voice->fm2frq2_lfo2_freq];
+
+ int divider = (the_voice->fm2frq2_lfo2_vibrato < 0) ? 0x80 : 0x7F;
+ the_voice->fixed_lfo2_vibrato = ((int32_t)the_voice->fm2frq2_lfo2_vibrato) * 0x4000 / divider;
+ }
+ return;
+
+ case 7: /*ID? I believe that this allows applications to know if the emu is in use by another application */
+ emu8k->id = val;
+ return;
+ }
+ break;
+
+ case 0xE02: /* Pointer. also known as BLASTER+0xC02 and EMU+0x802 */
+ emu8k->cur_voice = (val & 31);
+ emu8k->cur_reg = ((val >> 5) & 7);
+ return;
+ }
+ pclog("EMU8K WRITE: Unknown register write: %04X-%02X(%d/%d): %04X \n", addr, (emu8k->cur_reg) << 5 | emu8k->cur_voice,
+ emu8k->cur_reg, emu8k->cur_voice, val);
+
+}
+
+uint8_t emu8k_inb(emu8k_t *emu8k, uint16_t addr)
+{
+ /* Reading a single byte is a feature that at least Impulse tracker uses,
+ * but only on detection code and not for odd addresses.*/
+ if (addr & 1)
+ return emu8k_inw(emu8k, addr & ~1) >> 1;
+ return emu8k_inw(emu8k, addr) & 0xff;
+}
+
+void emu8k_outb(emu8k_t *emu8k, uint16_t addr, uint8_t val)
+{
+ /* TODO: AWE32 docs says that you cannot write in bytes, but if
+ * an app were to use this implementation, the content of the LS Byte would be lost.*/
+ if (addr & 1)
+ emu8k_outw(emu8k, addr & ~1, val << 8);
+ else
+ emu8k_outw(emu8k, addr, val);
+}
+
+/* TODO: This is not a correct emulation, just a workalike implementation. */
+void emu8k_work_chorus(int32_t* inbuf, int32_t* outbuf, emu8k_chorus_eng_t* engine, int count)
+{
+ int pos;
+ for (pos = 0; pos < count; pos++)
+ {
+ double lfo_inter1 = chortable[engine->lfo_pos.int_address];
+ // double lfo_inter2 = chortable[(engine->lfo_pos.int_address+1)&0xFFFF];
+
+ double offset_lfo = lfo_inter1; //= lfo_inter1 + ((lfo_inter2-lfo_inter1)*engine->lfo_pos.fract_address/65536.0);
+ offset_lfo *= engine->lfodepth_multip;
+
+ /* Work left */
+ double readdouble = (double)engine->write - (double)engine->delay_samples_central - offset_lfo;
+ int read = (int32_t)floor(readdouble);
+ int fraction_part = (readdouble - (double)read) * 65536.0;
+ int next_value = read + 1;
+ if (read < 0)
+ {
+ read += EMU8K_LFOCHORUS_SIZE;
+ if (next_value < 0) next_value += EMU8K_LFOCHORUS_SIZE;
+ }
+ else if (next_value >= EMU8K_LFOCHORUS_SIZE)
+ {
+ next_value -= EMU8K_LFOCHORUS_SIZE;
+ if (read >= EMU8K_LFOCHORUS_SIZE) read -= EMU8K_LFOCHORUS_SIZE;
+ }
+ int32_t dat1 = engine->chorus_left_buffer[read];
+ int32_t dat2 = engine->chorus_left_buffer[next_value];
+ dat1 += ((dat2 - dat1) * fraction_part) >> 16;
+
+ engine->chorus_left_buffer[engine->write] = *inbuf + ((dat1 * engine->feedback) >> 8);
+
+
+ /* Work right */
+ readdouble = (double)engine->write - (double)engine->delay_samples_central - engine->delay_offset_samples_right - offset_lfo;
+ read = (int32_t)floor(readdouble);
+ next_value = read + 1;
+ if (read < 0)
+ {
+ read += EMU8K_LFOCHORUS_SIZE;
+ if (next_value < 0) next_value += EMU8K_LFOCHORUS_SIZE;
+ }
+ else if (next_value >= EMU8K_LFOCHORUS_SIZE)
+ {
+ next_value -= EMU8K_LFOCHORUS_SIZE;
+ if (read >= EMU8K_LFOCHORUS_SIZE) read -= EMU8K_LFOCHORUS_SIZE;
+ }
+ int32_t dat3 = engine->chorus_right_buffer[read];
+ int32_t dat4 = engine->chorus_right_buffer[next_value];
+ dat3 += ((dat4 - dat3) * fraction_part) >> 16;
+
+ engine->chorus_right_buffer[engine->write] = *inbuf + ((dat3 * engine->feedback) >> 8);
+
+ ++engine->write;
+ engine->write %= EMU8K_LFOCHORUS_SIZE;
+ engine->lfo_pos.addr += engine->lfo_inc.addr;
+ engine->lfo_pos.int_address &= 0xFFFF;
+
+ (*outbuf++) += dat1;
+ (*outbuf++) += dat3;
+ inbuf++;
+ }
+
+}
+
+int32_t emu8k_reverb_comb_work(emu8k_reverb_combfilter_t* comb, int32_t in)
+{
+
+ int32_t bufin;
+ /* get echo */
+ int32_t output = comb->reflection[comb->read_pos];
+ /* apply lowpass */
+ comb->filterstore = (output * comb->damp2) + (comb->filterstore * comb->damp1);
+ /* appply feedback */
+ bufin = in - (comb->filterstore * comb->feedback);
+ /* store new value in delayed buffer */
+ comb->reflection[comb->read_pos] = bufin;
+
+ if (++comb->read_pos >= comb->bufsize) comb->read_pos = 0;
+
+ return output * comb->output_gain;
+}
+
+int32_t emu8k_reverb_diffuser_work(emu8k_reverb_combfilter_t* comb, int32_t in)
+{
+
+ int32_t bufout = comb->reflection[comb->read_pos];
+ /*diffuse*/
+ int32_t bufin = -in + (bufout * comb->feedback);
+ int32_t output = bufout - (bufin * comb->feedback);
+ /* store new value in delayed buffer */
+ comb->reflection[comb->read_pos] = bufin;
+
+ if (++comb->read_pos >= comb->bufsize) comb->read_pos = 0;
+
+ return output;
+}
+
+int32_t emu8k_reverb_tail_work(emu8k_reverb_combfilter_t* comb, emu8k_reverb_combfilter_t* allpasses, int32_t in)
+{
+ int32_t output = comb->reflection[comb->read_pos];
+ /* store new value in delayed buffer */
+ comb->reflection[comb->read_pos] = in;
+
+ //output = emu8k_reverb_allpass_work(&allpasses[0],output);
+ output = emu8k_reverb_diffuser_work(&allpasses[1], output);
+ output = emu8k_reverb_diffuser_work(&allpasses[2], output);
+ //output = emu8k_reverb_allpass_work(&allpasses[3],output);
+
+ if (++comb->read_pos >= comb->bufsize) comb->read_pos = 0;
+
+ return output;
+}
+int32_t emu8k_reverb_damper_work(emu8k_reverb_combfilter_t* comb, int32_t in)
+{
+ /* apply lowpass */
+ comb->filterstore = (in * comb->damp2) + (comb->filterstore * comb->damp1);
+ return comb->filterstore;
+}
+
+/* TODO: This is not a correct emulation, just a workalike implementation. */
+void emu8k_work_reverb(int32_t* inbuf, int32_t* outbuf, emu8k_reverb_eng_t* engine, int count)
+{
+ int pos;
+ if (engine->link_return_type)
+ {
+ for (pos = 0; pos < count; pos++)
+ {
+ int32_t dat1, dat2, in, in2;
+ in = emu8k_reverb_damper_work(&engine->damper, inbuf[pos]);
+ in2 = (in * engine->refl_in_amp) >> 8;
+ dat2 = emu8k_reverb_comb_work(&engine->reflections[0], in2);
+ dat2 += emu8k_reverb_comb_work(&engine->reflections[1], in2);
+ dat1 = emu8k_reverb_comb_work(&engine->reflections[2], in2);
+ dat2 += emu8k_reverb_comb_work(&engine->reflections[3], in2);
+ dat1 += emu8k_reverb_comb_work(&engine->reflections[4], in2);
+ dat2 += emu8k_reverb_comb_work(&engine->reflections[5], in2);
+
+ dat1 += (emu8k_reverb_tail_work(&engine->tailL, &engine->allpass[0], in + dat1) * engine->link_return_amp) >> 8;
+ dat2 += (emu8k_reverb_tail_work(&engine->tailR, &engine->allpass[4], in + dat2) * engine->link_return_amp) >> 8;
+
+ (*outbuf++) += (dat1 * engine->out_mix) >> 8;
+ (*outbuf++) += (dat2 * engine->out_mix) >> 8;
+ }
+ }
+ else
+ {
+ for (pos = 0; pos < count; pos++)
+ {
+ int32_t dat1, dat2, in, in2;
+ in = emu8k_reverb_damper_work(&engine->damper, inbuf[pos]);
+ in2 = (in * engine->refl_in_amp) >> 8;
+ dat1 = emu8k_reverb_comb_work(&engine->reflections[0], in2);
+ dat1 += emu8k_reverb_comb_work(&engine->reflections[1], in2);
+ dat1 += emu8k_reverb_comb_work(&engine->reflections[2], in2);
+ dat1 += emu8k_reverb_comb_work(&engine->reflections[3], in2);
+ dat1 += emu8k_reverb_comb_work(&engine->reflections[4], in2);
+ dat1 += emu8k_reverb_comb_work(&engine->reflections[5], in2);
+ dat2 = dat1;
+
+ dat1 += (emu8k_reverb_tail_work(&engine->tailL, &engine->allpass[0], in + dat1) * engine->link_return_amp) >> 8;
+ dat2 += (emu8k_reverb_tail_work(&engine->tailR, &engine->allpass[4], in + dat2) * engine->link_return_amp) >> 8;
+
+ (*outbuf++) += (dat1 * engine->out_mix) >> 8;
+ (*outbuf++) += (dat2 * engine->out_mix) >> 8;
+ }
+ }
+}
+void emu8k_work_eq(int32_t* inoutbuf, int count)
+{
+ // TODO: Work EQ over buf
+ NOREF(inoutbuf);
+ NOREF(count);
+}
+
+int32_t emu8k_vol_slide(emu8k_slide_t* slide, int32_t target)
+{
+ if (slide->last < target)
+ {
+ slide->last += 0x400;
+ if (slide->last > target) slide->last = target;
+ }
+ else if (slide->last > target)
+ {
+ slide->last -= 0x400;
+ if (slide->last < target) slide->last = target;
+ }
+ return slide->last;
+}
+
+//int32_t old_pitch[32]={0};
+//int32_t old_cut[32]={0};
+//int32_t old_vol[32]={0};
+void emu8k_update(emu8k_t* emu8k, int new_pos)
+{
+ if (emu8k->pos >= new_pos)
+ return;
+
+ AssertLogRelReturnVoid(new_pos <= MAXSOUNDBUFLEN);
+
+ int32_t* buf;
+ emu8k_voice_t* emu_voice;
+ int pos;
+ int c;
+
+ /* Clean the buffers since we will accumulate into them. */
+ buf = &emu8k->buffer[emu8k->pos * 2];
+ memset(buf, 0, 2 * (new_pos - emu8k->pos) * sizeof(emu8k->buffer[0]));
+ memset(&emu8k->chorus_in_buffer[emu8k->pos], 0, (new_pos - emu8k->pos) * sizeof(emu8k->chorus_in_buffer[0]));
+ memset(&emu8k->reverb_in_buffer[emu8k->pos], 0, (new_pos - emu8k->pos) * sizeof(emu8k->reverb_in_buffer[0]));
+
+ /* Voices section */
+ for (c = 0; c < 32; c++)
+ {
+ emu_voice = &emu8k->voice[c];
+ buf = &emu8k->buffer[emu8k->pos * 2];
+
+ for (pos = emu8k->pos; pos < new_pos; pos++)
+ {
+ int32_t dat;
+
+ if (emu_voice->cvcf_curr_volume)
+ {
+ /* Waveform oscillator */
+#ifdef RESAMPLER_LINEAR
+ dat = EMU8K_READ_INTERP_LINEAR(emu8k, emu_voice->addr.int_address,
+ emu_voice->addr.fract_address);
+
+#elif defined RESAMPLER_CUBIC
+ dat = EMU8K_READ_INTERP_CUBIC(emu8k, emu_voice->addr.int_address,
+ emu_voice->addr.fract_address);
+#endif
+
+ /* Filter section */
+ if (emu_voice->filterq_idx || emu_voice->cvcf_curr_filt_ctoff != 0xFFFF)
+ {
+ int cutoff = emu_voice->cvcf_curr_filt_ctoff >> 8;
+ const int64_t coef0 = filt_coeffs[emu_voice->filterq_idx][cutoff][0];
+ const int64_t coef1 = filt_coeffs[emu_voice->filterq_idx][cutoff][1];
+ const int64_t coef2 = filt_coeffs[emu_voice->filterq_idx][cutoff][2];
+ /* clip at twice the range */
+#define ClipBuffer(buf) (buf < -16777216) ? -16777216 : (buf > 16777216) ? 16777216 : buf
+
+#ifdef FILTER_INITIAL
+#define NOOP(x) (void)x;
+ NOOP(coef1)
+ /* Apply expected attenuation. (FILTER_MOOG does it implicitly, but this one doesn't).
+ * Work in 24bits. */
+ dat = (dat * emu_voice->filt_att) >> 8;
+
+ int64_t vhp = ((-emu_voice->filt_buffer[0] * coef2) >> 24) - emu_voice->filt_buffer[1] - dat;
+ emu_voice->filt_buffer[1] += (emu_voice->filt_buffer[0] * coef0) >> 24;
+ emu_voice->filt_buffer[0] += (vhp * coef0) >> 24;
+ dat = (int32_t)(emu_voice->filt_buffer[1] >> 8);
+ if (dat > 32767) { dat = 32767; }
+ else if (dat < -32768) { dat = -32768; }
+
+#elif defined FILTER_MOOG
+
+ /*move to 24bits*/
+ dat <<= 8;
+
+ dat -= (coef2 * emu_voice->filt_buffer[4]) >> 24; /*feedback*/
+ int64_t t1 = emu_voice->filt_buffer[1];
+ emu_voice->filt_buffer[1] = ((dat + emu_voice->filt_buffer[0]) * coef0 - emu_voice->filt_buffer[1] * coef1) >> 24;
+ emu_voice->filt_buffer[1] = ClipBuffer(emu_voice->filt_buffer[1]);
+
+ int64_t t2 = emu_voice->filt_buffer[2];
+ emu_voice->filt_buffer[2] = ((emu_voice->filt_buffer[1] + t1) * coef0 - emu_voice->filt_buffer[2] * coef1) >> 24;
+ emu_voice->filt_buffer[2] = ClipBuffer(emu_voice->filt_buffer[2]);
+
+ int64_t t3 = emu_voice->filt_buffer[3];
+ emu_voice->filt_buffer[3] = ((emu_voice->filt_buffer[2] + t2) * coef0 - emu_voice->filt_buffer[3] * coef1) >> 24;
+ emu_voice->filt_buffer[3] = ClipBuffer(emu_voice->filt_buffer[3]);
+
+ emu_voice->filt_buffer[4] = ((emu_voice->filt_buffer[3] + t3) * coef0 - emu_voice->filt_buffer[4] * coef1) >> 24;
+ emu_voice->filt_buffer[4] = ClipBuffer(emu_voice->filt_buffer[4]);
+
+ emu_voice->filt_buffer[0] = ClipBuffer(dat);
+
+ dat = (int32_t)(emu_voice->filt_buffer[4] >> 8);
+ if (dat > 32767)
+ { dat = 32767; }
+ else if (dat < -32768)
+ { dat = -32768; }
+
+#elif defined FILTER_CONSTANT
+
+ /* Apply expected attenuation. (FILTER_MOOG does it implicitly, but this one is constant gain).
+ * Also stay at 24bits.*/
+ dat = (dat * emu_voice->filt_att) >> 8;
+
+ emu_voice->filt_buffer[0] = (coef1 * emu_voice->filt_buffer[0]
+ + coef0 * (dat +
+ ((coef2 * (emu_voice->filt_buffer[0] - emu_voice->filt_buffer[1]))>>24))
+ ) >> 24;
+ emu_voice->filt_buffer[1] = (coef1 * emu_voice->filt_buffer[1]
+ + coef0 * emu_voice->filt_buffer[0]) >> 24;
+
+ emu_voice->filt_buffer[0] = ClipBuffer(emu_voice->filt_buffer[0]);
+ emu_voice->filt_buffer[1] = ClipBuffer(emu_voice->filt_buffer[1]);
+
+ dat = (int32_t)(emu_voice->filt_buffer[1] >> 8);
+ if (dat > 32767) { dat = 32767; }
+ else if (dat < -32768) { dat = -32768; }
+
+#endif
+
+ }
+ if ((emu8k->hwcf3 & 0x04) && !CCCA_DMA_ACTIVE(emu_voice->ccca))
+ {
+ /*volume and pan*/
+ dat = (dat * emu_voice->cvcf_curr_volume) >> 16;
+
+ (*buf++) += (dat * emu_voice->vol_l) >> 8;
+ (*buf++) += (dat * emu_voice->vol_r) >> 8;
+
+ /* Effects section */
+ if (emu_voice->ptrx_revb_send > 0)
+ {
+ emu8k->reverb_in_buffer[pos] += (dat * emu_voice->ptrx_revb_send) >> 8;
+ }
+ if (emu_voice->csl_chor_send > 0)
+ {
+ emu8k->chorus_in_buffer[pos] += (dat * emu_voice->csl_chor_send) >> 8;
+ }
+ }
+ }
+
+ if (emu_voice->env_engine_on)
+ {
+ int32_t attenuation = emu_voice->initial_att;
+ int32_t filtercut = emu_voice->initial_filter;
+ int32_t currentpitch = emu_voice->ip;
+ /* run envelopes */
+ emu8k_envelope_t* volenv = &emu_voice->vol_envelope;
+ switch (volenv->state)
+ {
+ case ENV_DELAY:
+ volenv->delay_samples--;
+ if (volenv->delay_samples <= 0)
+ {
+ volenv->state = ENV_ATTACK;
+ volenv->delay_samples = 0;
+ }
+ attenuation = 0x1FFFFF;
+ break;
+
+ case ENV_ATTACK:
+ /* Attack amount is in linear amplitude */
+ volenv->value_amp_hz += volenv->attack_amount_amp_hz;
+ if (volenv->value_amp_hz >= (1 << 21))
+ {
+ volenv->value_amp_hz = 1 << 21;
+ volenv->value_db_oct = 0;
+ if (volenv->hold_samples)
+ {
+ volenv->state = ENV_HOLD;
+ }
+ else
+ {
+ /* RAMP_UP since db value is inverted and it is 0 at this point. */
+ volenv->state = ENV_RAMP_UP;
+ }
+ }
+ attenuation += env_vol_amplitude_to_db[volenv->value_amp_hz >> 5] << 5;
+ break;
+
+ case ENV_HOLD:
+ volenv->hold_samples--;
+ if (volenv->hold_samples <= 0)
+ {
+ volenv->state = ENV_RAMP_UP;
+ }
+ attenuation += volenv->value_db_oct;
+ break;
+
+ case ENV_RAMP_DOWN:
+ /* Decay/release amount is in fraction of dBs and is always positive */
+ volenv->value_db_oct -= volenv->ramp_amount_db_oct;
+ if (volenv->value_db_oct <= volenv->sustain_value_db_oct)
+ {
+ volenv->value_db_oct = volenv->sustain_value_db_oct;
+ volenv->state = ENV_SUSTAIN;
+ }
+ attenuation += volenv->value_db_oct;
+ break;
+
+ case ENV_RAMP_UP:
+ /* Decay/release amount is in fraction of dBs and is always positive */
+ volenv->value_db_oct += volenv->ramp_amount_db_oct;
+ if (volenv->value_db_oct >= volenv->sustain_value_db_oct)
+ {
+ volenv->value_db_oct = volenv->sustain_value_db_oct;
+ volenv->state = ENV_SUSTAIN;
+ }
+ attenuation += volenv->value_db_oct;
+ break;
+
+ case ENV_SUSTAIN:
+ attenuation += volenv->value_db_oct;
+ break;
+
+ case ENV_STOPPED:
+ attenuation = 0x1FFFFF;
+ break;
+ }
+
+ emu8k_envelope_t* modenv = &emu_voice->mod_envelope;
+ switch (modenv->state)
+ {
+ case ENV_DELAY:
+ modenv->delay_samples--;
+ if (modenv->delay_samples <= 0)
+ {
+ modenv->state = ENV_ATTACK;
+ modenv->delay_samples = 0;
+ }
+ break;
+
+ case ENV_ATTACK:
+ /* Attack amount is in linear amplitude */
+ modenv->value_amp_hz += modenv->attack_amount_amp_hz;
+ modenv->value_db_oct = env_mod_hertz_to_octave[modenv->value_amp_hz >> 5] << 5;
+ if (modenv->value_amp_hz >= (1 << 21))
+ {
+ modenv->value_amp_hz = 1 << 21;
+ modenv->value_db_oct = 1 << 21;
+ if (modenv->hold_samples)
+ {
+ modenv->state = ENV_HOLD;
+ }
+ else
+ {
+ modenv->state = ENV_RAMP_DOWN;
+ }
+ }
+ break;
+
+ case ENV_HOLD:
+ modenv->hold_samples--;
+ if (modenv->hold_samples <= 0)
+ {
+ modenv->state = ENV_RAMP_UP;
+ }
+ break;
+
+ case ENV_RAMP_DOWN:
+ /* Decay/release amount is in fraction of octave and is always positive */
+ modenv->value_db_oct -= modenv->ramp_amount_db_oct;
+ if (modenv->value_db_oct <= modenv->sustain_value_db_oct)
+ {
+ modenv->value_db_oct = modenv->sustain_value_db_oct;
+ modenv->state = ENV_SUSTAIN;
+ }
+ break;
+
+ case ENV_RAMP_UP:
+ /* Decay/release amount is in fraction of octave and is always positive */
+ modenv->value_db_oct += modenv->ramp_amount_db_oct;
+ if (modenv->value_db_oct >= modenv->sustain_value_db_oct)
+ {
+ modenv->value_db_oct = modenv->sustain_value_db_oct;
+ modenv->state = ENV_SUSTAIN;
+ }
+ break;
+ }
+
+ /* run lfos */
+ if (emu_voice->lfo1_delay_samples)
+ {
+ emu_voice->lfo1_delay_samples--;
+ }
+ else
+ {
+ emu_voice->lfo1_count.addr += emu_voice->lfo1_speed;
+ emu_voice->lfo1_count.int_address &= 0xFFFF;
+ }
+ if (emu_voice->lfo2_delay_samples)
+ {
+ emu_voice->lfo2_delay_samples--;
+ }
+ else
+ {
+ emu_voice->lfo2_count.addr += emu_voice->lfo2_speed;
+ emu_voice->lfo2_count.int_address &= 0xFFFF;
+ }
+
+ if (emu_voice->fixed_modenv_pitch_height)
+ {
+ /* modenv range 1<<21, pitch height range 1<<14 desired range 0x1000 (+/-one octave) */
+ currentpitch += ((modenv->value_db_oct >> 9) * emu_voice->fixed_modenv_pitch_height) >> 14;
+ }
+
+ if (emu_voice->fixed_lfo1_vibrato)
+ {
+ /* table range 1<<15, pitch mod range 1<<14 desired range 0x1000 (+/-one octave) */
+ int32_t lfo1_vibrato = (lfotable[emu_voice->lfo1_count.int_address] * emu_voice->fixed_lfo1_vibrato) >> 17;
+ currentpitch += lfo1_vibrato;
+ }
+ if (emu_voice->fixed_lfo2_vibrato)
+ {
+ /* table range 1<<15, pitch mod range 1<<14 desired range 0x1000 (+/-one octave) */
+ int32_t lfo2_vibrato = (lfotable[emu_voice->lfo2_count.int_address] * emu_voice->fixed_lfo2_vibrato) >> 17;
+ currentpitch += lfo2_vibrato;
+ }
+
+ if (emu_voice->fixed_modenv_filter_height)
+ {
+ /* modenv range 1<<21, pitch height range 1<<14 desired range 0x200000 (+/-full filter range) */
+ filtercut += ((modenv->value_db_oct >> 9) * emu_voice->fixed_modenv_filter_height) >> 5;
+ }
+
+ if (emu_voice->fixed_lfo1_filt_mod)
+ {
+ /* table range 1<<15, pitch mod range 1<<14 desired range 0x100000 (+/-three octaves) */
+ int32_t lfo1_filtmod = (lfotable[emu_voice->lfo1_count.int_address] * emu_voice->fixed_lfo1_filt_mod) >> 9;
+ filtercut += lfo1_filtmod;
+ }
+
+ if (emu_voice->fixed_lfo1_tremolo)
+ {
+ /* table range 1<<15, pitch mod range 1<<14 desired range 0x40000 (+/-12dBs). */
+ int32_t lfo1_tremolo = (lfotable[emu_voice->lfo1_count.int_address] * emu_voice->fixed_lfo1_tremolo) >> 11;
+ attenuation += lfo1_tremolo;
+ }
+
+ if (currentpitch > 0xFFFF) currentpitch = 0xFFFF;
+ if (currentpitch < 0) currentpitch = 0;
+ if (attenuation > 0x1FFFFF) attenuation = 0x1FFFFF;
+ if (attenuation < 0) attenuation = 0;
+ if (filtercut > 0x1FFFFF) filtercut = 0x1FFFFF;
+ if (filtercut < 0) filtercut = 0;
+
+ emu_voice->vtft_vol_target = env_vol_db_to_vol_target[attenuation >> 5];
+ emu_voice->vtft_filter_target = filtercut >> 5;
+ emu_voice->ptrx_pit_target = freqtable[currentpitch] >> 18;
+
+ }
+/*
+I've recopilated these sentences to get an idea of how to loop
+
+- Set its PSST register and its CLS register to zero to cause no loops to occur.
+-Setting the Loop Start Offset and the Loop End Offset to the same value, will cause the oscillator to loop the entire memory.
+
+-Setting the PlayPosition greater than the Loop End Offset, will cause the oscillator to play in reverse, back to the Loop End Offset.
+ It's pretty neat, but appears to be uncontrollable (the rate at which the samples are played in reverse).
+
+-Note that due to interpolator offset, the actual loop point is one greater than the start address
+-Note that due to interpolator offset, the actual loop point will end at an address one greater than the loop address
+-Note that the actual audio location is the point 1 word higher than this value due to interpolation offset
+-In programs that use the awe, they generally set the loop address as "loopaddress -1" to compensate for the above.
+(Note: I am already using address+1 in the interpolators so these things are already as they should.)
+*/
+ emu_voice->addr.addr += ((uint64_t)emu_voice->cpf_curr_pitch) << 18;
+ if (emu_voice->addr.addr >= emu_voice->loop_end.addr)
+ {
+ emu_voice->addr.int_address -= (emu_voice->loop_end.int_address - emu_voice->loop_start.int_address);
+ emu_voice->addr.int_address &= EMU8K_MEM_ADDRESS_MASK;
+ }
+
+ /* TODO: How and when are the target and current values updated */
+ emu_voice->cpf_curr_pitch = emu_voice->ptrx_pit_target;
+ emu_voice->cvcf_curr_volume = emu8k_vol_slide(&emu_voice->volumeslide, emu_voice->vtft_vol_target);
+ emu_voice->cvcf_curr_filt_ctoff = emu_voice->vtft_filter_target;
+ }
+
+ /* Update EMU voice registers. */
+ emu_voice->ccca = (((uint32_t)emu_voice->ccca_qcontrol) << 24) | emu_voice->addr.int_address;
+ emu_voice->cpf_curr_frac_addr = emu_voice->addr.fract_address;
+
+ //if ( emu_voice->cvcf_curr_volume != old_vol[c]) {
+ // pclog("EMUVOL (%d):%d\n", c, emu_voice->cvcf_curr_volume);
+ // old_vol[c]=emu_voice->cvcf_curr_volume;
+ //}
+ //pclog("EMUFILT :%d\n", emu_voice->cvcf_curr_filt_ctoff);
+ }
+
+ buf = &emu8k->buffer[emu8k->pos * 2];
+ emu8k_work_reverb(&emu8k->reverb_in_buffer[emu8k->pos], buf, &emu8k->reverb_engine, new_pos - emu8k->pos);
+ emu8k_work_chorus(&emu8k->chorus_in_buffer[emu8k->pos], buf, &emu8k->chorus_engine, new_pos - emu8k->pos);
+ emu8k_work_eq(buf, new_pos - emu8k->pos);
+
+ // Clip signal
+ for (pos = emu8k->pos; pos < new_pos; pos++)
+ {
+ if (buf[0] < -32768)
+ buf[0] = -32768;
+ else if (buf[0] > 32767)
+ buf[0] = 32767;
+
+ if (buf[1] < -32768)
+ buf[1] = -32768;
+ else if (buf[1] > 32767)
+ buf[1] = 32767;
+
+ buf += 2;
+ }
+
+ /* Update EMU clock. */
+ emu8k->wc += (new_pos - emu8k->pos);
+
+ emu8k->pos = new_pos;
+}
+
+static void emu8k_init_globals()
+{
+ int c;
+ double out;
+
+ /*Create frequency table. (Convert initial pitch register value to a linear speed change)
+ * The input is encoded such as 0xe000 is center note (no pitch shift)
+ * and from then on , changing up or down 0x1000 (4096) increments/decrements an octave.
+ * Note that this is in reference to the 44.1Khz clock that the channels play at.
+ * The 65536 * 65536 is in order to left-shift the 32bit value to a 64bit value as a 32.32 fixed point.
+ */
+ for (c = 0; c < 0x10000; c++)
+ {
+ freqtable[c] = (uint64_t)(exp2((double)(c - 0xe000) / 4096.0) * 65536.0 * 65536.0);
+ }
+ /* Shortcut: minimum pitch equals stopped. I don't really know if this is true, but it's better
+ * since some programs set the pitch to 0 for unused channels. */
+ freqtable[0] = 0;
+
+ /* starting at 65535 because it is used for "volume target" register conversion. */
+ out = 65535.0;
+ for (c = 0; c < 256; c++)
+ {
+ attentable[c] = (int32_t)out;
+ out /= sqrt(1.09018); /*0.375 dB steps*/
+ }
+ /* Shortcut: max attenuation is silent, not -96dB. */
+ attentable[255] = 0;
+
+ /* Note: these two tables have "db" inverted: 0 dB is max volume, 65535 "db" (-96.32dBFS) is silence.
+ * Important: Using 65535 as max output value because this is intended to be used with the volume target register! */
+ out = 65535.0;
+ for (c = 0; c < 0x10000; c++)
+ {
+ //double db = -(c*6.0205999/65535.0)*16.0;
+ //out = powf(10.f,db/20.f) * 65536.0;
+ env_vol_db_to_vol_target[c] = (int32_t)out;
+ /* calculated from the 65536th root of 65536 */
+ out /= 1.00016923970;
+ }
+ /* Shortcut: max attenuation is silent, not -96dB. */
+ env_vol_db_to_vol_target[0x10000 - 1] = 0;
+ /* One more position to accept max value being 65536. */
+ env_vol_db_to_vol_target[0x10000] = 0;
+
+ for (c = 1; c < 0x10000; c++)
+ {
+ out = -680.32142884264 * 20.0 * log10(((double)c) / 65535.0);
+ env_vol_amplitude_to_db[c] = (int32_t)out;
+ }
+ /*Shortcut: max attenuation is silent, not -96dB.*/
+ env_vol_amplitude_to_db[0] = 65535;
+ /* One more position to acceMpt max value being 65536. */
+ env_vol_amplitude_to_db[0x10000] = 0;
+
+ for (c = 1; c < 0x10000; c++)
+ {
+ out = log2((((double)c) / 0x10000) + 1.0) * 65536.0;
+ env_mod_hertz_to_octave[c] = (int32_t)out;
+ }
+ /*No hertz change, no octave change. */
+ env_mod_hertz_to_octave[0] = 0;
+ /* One more position to accept max value being 65536. */
+ env_mod_hertz_to_octave[0x10000] = 65536;
+
+
+ /* This formula comes from vince vu/judge dredd's awe32p10 and corresponds to what the freebsd/linux AWE32 driver has. */
+ float millis;
+ for (c = 0; c < 128; c++)
+ {
+ if (c == 0)
+ millis = 0; /* This means never attack. */
+ else if (c < 32)
+ millis = 11878.0 / c;
+ else
+ millis = 360 * exp((c - 32) / (16.0 / log(1.0 / 2.0)));
+
+ env_attack_to_samples[c] = 44.1 * millis;
+ /* This is an alternate formula with linear increments, but probably incorrect:
+ * millis = (256+4096*(0x7F-c)) */
+ }
+
+ /* The LFOs use a triangular waveform starting at zero and going 1/-1/1/-1.
+ * This table is stored in signed 16bits precision, with a period of 65536 samples */
+ for (c = 0; c < 65536; c++)
+ {
+ int d = (c + 16384) & 65535;
+ if (d >= 32768)
+ lfotable[c] = 32768 + ((32768 - d) * 2);
+ else
+ lfotable[c] = (d * 2) - 32768;
+ }
+ /* The 65536 * 65536 is in order to left-shift the 32bit value to a 64bit value as a 32.32 fixed point. */
+ out = 0.01;
+ for (c = 0; c < 256; c++)
+ {
+ lfofreqtospeed[c] = (uint64_t)(out * 65536.0 / 44100.0 * 65536.0 * 65536.0);
+ out += 0.042;
+ }
+
+ for (c = 0; c < 65536; c++)
+ {
+ chortable[c] = sin(c * M_PI / 32768.0);
+ }
+
+
+ /* Filter coefficients tables. Note: Values are multiplied by *16777216 to left shift 24 bits. (i.e. 8.24 fixed point) */
+ int qidx;
+ for (qidx = 0; qidx < 16; qidx++)
+ {
+ out = 125.0; /* Start at 125Hz */
+ for (c = 0; c < 256; c++)
+ {
+#ifdef FILTER_INITIAL
+ float w0 = sin(2.0*M_PI*out / 44100.0);
+ /* The value 102.5f has been selected a bit randomly. Pretends to reach 0.2929 at w0 = 1.0 */
+ float q = (qidx / 102.5f) * (1.0 + 1.0 / w0);
+ /* Limit max value. Else it would be 470. */
+ if (q > 200) q=200;
+ filt_coeffs[qidx][c][0] = (int32_t)(w0 * 16777216.0);
+ filt_coeffs[qidx][c][1] = 16777216.0;
+ filt_coeffs[qidx][c][2] = (int32_t)((1.0f / (0.7071f + q)) * 16777216.0);
+#elif defined FILTER_MOOG
+ float w0 = sin(2.0 * M_PI * out / 44100.0);
+ float q_factor = 1.0f - w0;
+ float p = w0 + 0.8f * w0 * q_factor;
+ float f = p + p - 1.0f;
+ float resonance = (1.0 - pow(2.0, -qidx * 24.0 / 90.0)) * 0.8;
+ float q = resonance * (1.0f + 0.5f * q_factor * (w0 + 5.6f * q_factor * q_factor));
+ filt_coeffs[qidx][c][0] = (int32_t)(p * 16777216.0);
+ filt_coeffs[qidx][c][1] = (int32_t)(f * 16777216.0);
+ filt_coeffs[qidx][c][2] = (int32_t)(q * 16777216.0);
+#elif defined FILTER_CONSTANT
+ float q = (1.0-pow(2.0,-qidx*24.0/90.0))*0.8;
+ float coef0 = sin(2.0*M_PI*out / 44100.0);
+ float coef1 = 1.0 - coef0;
+ float coef2 = q * (1.0 + 1.0 / coef1);
+ filt_coeffs[qidx][c][0] = (int32_t)(coef0 * 16777216.0);
+ filt_coeffs[qidx][c][1] = (int32_t)(coef1 * 16777216.0);
+ filt_coeffs[qidx][c][2] = (int32_t)(coef2 * 16777216.0);
+#endif //FILTER_TYPE
+ /* 42.66 divisions per octave (the doc says quarter seminotes which is 48, but then it would be almost an octave less) */
+ out *= 1.016378315;
+ /* 42 divisions. This moves the max frequency to 8.5Khz.*/
+ //out *= 1.0166404394;
+ /* This is a linear increment method, that corresponds to the NRPN table, but contradicts the EMU8KPRM doc: */
+ //out = 100.0 + (c+1.0)*31.25; //31.25Hz steps */
+ }
+ }
+
+ /* Cubic Resampling ( 4point cubic spline) */
+ double const resdouble = 1.0 / (double)CUBIC_RESOLUTION;
+ for (c = 0; c < CUBIC_RESOLUTION; c++)
+ {
+ double x = (double)c * resdouble;
+ /* Cubic resolution is made of four table, but I've put them all in one table to optimize memory access. */
+ cubic_table[c * 4] = (-0.5 * x * x * x + x * x - 0.5 * x);
+ cubic_table[c * 4 + 1] = (1.5 * x * x * x - 2.5 * x * x + 1.0);
+ cubic_table[c * 4 + 2] = (-1.5 * x * x * x + 2.0 * x * x + 0.5 * x);
+ cubic_table[c * 4 + 3] = (0.5 * x * x * x - 0.5 * x * x);
+ }
+}
+
+emu8k_t* emu8k_alloc(void *rom, size_t onboard_ram)
+{
+ emu8k_t *emu8k = RTMemAlloc(sizeof(emu8k_t));
+ AssertPtrReturn(emu8k, NULL);
+
+ emu8k_init_globals();
+
+ emu8k->rom = rom;
+
+ /*AWE-DUMP creates ROM images offset by 2 bytes, so if we detect this
+ then correct it*/
+ if (emu8k->rom[3] == 0x314d && emu8k->rom[4] == 0x474d)
+ {
+ memmove(&emu8k->rom[0], &emu8k->rom[1], (1024 * 1024) - 2);
+ emu8k->rom[0x7ffff] = 0;
+ }
+
+ emu8k->empty = RTMemAllocZ(2*BLOCK_SIZE_WORDS);
+ AssertPtr(emu8k->empty);
+
+ // Initialize ram_pointers
+ int j = 0;
+ for (; j < 0x8; j++)
+ {
+ emu8k->ram_pointers[j] = emu8k->rom + (j * BLOCK_SIZE_WORDS);
+ }
+ for (; j < 0x20; j++)
+ {
+ emu8k->ram_pointers[j] = emu8k->empty;
+ }
+
+ if (onboard_ram > 0)
+ {
+ /*Clip to 28MB, since that's the max that we can address. */
+ Assert(onboard_ram <= 0x7000);
+ emu8k->ram = RTMemAllocZ(onboard_ram * _1K);
+ AssertPtr(emu8k->ram);
+
+ const int i_end = onboard_ram >> 7;
+ int i = 0;
+ for (; i < i_end; i++, j++)
+ {
+ emu8k->ram_pointers[j] = emu8k->ram + (i * BLOCK_SIZE_WORDS);
+ }
+ emu8k->ram_end_addr = EMU8K_RAM_MEM_START + (onboard_ram << 9);
+ }
+ else
+ {
+ emu8k->ram = NULL;
+ emu8k->ram_end_addr = EMU8K_RAM_MEM_START;
+ }
+ for (; j < 0x100; j++)
+ {
+ emu8k->ram_pointers[j] = emu8k->empty;
+
+ }
+
+ return emu8k;
+}
+
+void emu8k_free(emu8k_t* emu8k)
+{
+ RTMemFree(emu8k->empty);
+ RTMemFree(emu8k->ram);
+
+ RTMemFree(emu8k);
+}
+
+void emu8k_reset(emu8k_t* emu8k)
+{
+ /* NOTE! read_pos and buffer content is implicitly initialized to zero by the sb_t structure memset on sb_awe32_init() */
+ emu8k->reverb_engine.reflections[0].bufsize = 2 * REV_BUFSIZE_STEP;
+ emu8k->reverb_engine.reflections[1].bufsize = 4 * REV_BUFSIZE_STEP;
+ emu8k->reverb_engine.reflections[2].bufsize = 8 * REV_BUFSIZE_STEP;
+ emu8k->reverb_engine.reflections[3].bufsize = 13 * REV_BUFSIZE_STEP;
+ emu8k->reverb_engine.reflections[4].bufsize = 19 * REV_BUFSIZE_STEP;
+ emu8k->reverb_engine.reflections[5].bufsize = 26 * REV_BUFSIZE_STEP;
+
+ /*This is a bit random.*/
+ for (int c = 0; c < 4; c++)
+ {
+ emu8k->reverb_engine.allpass[3 - c].feedback = 0.5;
+ emu8k->reverb_engine.allpass[3 - c].bufsize = (4 * c) * REV_BUFSIZE_STEP + 55;
+ emu8k->reverb_engine.allpass[7 - c].feedback = 0.5;
+ emu8k->reverb_engine.allpass[7 - c].bufsize = (4 * c) * REV_BUFSIZE_STEP + 55;
+ }
+
+ /* Even when the documentation says that this has to be written by applications to initialize the card,
+ * several applications and drivers ( aweman on windows, linux oss driver..) read it to detect an AWE card. */
+ emu8k->hwcf1 = 0x59;
+ emu8k->hwcf2 = 0x20;
+ /* Initial state is muted. 0x04 is unmuted. */
+ emu8k->hwcf3 = 0x00;
+}
+
+void emu8k_render(emu8k_t *emu8k, int16_t *buf, size_t frames)
+{
+ emu8k_update(emu8k, frames);
+
+ // Convert from int32_t samples to int16_t
+ for (unsigned int i = 0; i < frames * 2; i++)
+ {
+ buf[i] = RT_CLAMP(emu8k->buffer[i], INT16_MIN, INT16_MAX);
+ }
+
+ emu8k->pos = 0;
+}
@@ -0,0 +1,69 @@ +/* + * PCem - IBM PC emulator + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +/* + * Portions: + * VMusic - a VirtualBox extension pack with various music devices + * Copyright (C) 2022 Javier S. Pedro + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#ifndef EMU8K_H +#define EMU8K_H + +#include <stddef.h> +#include <stdint.h> + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct emu8k_t emu8k_t; + +emu8k_t* emu8k_alloc(void *rom, size_t onboard_ram); +void emu8k_free(emu8k_t *emu8k); + +void emu8k_reset(emu8k_t *emu8k); + +uint16_t emu8k_inw(emu8k_t *emu8k, uint16_t addr); +void emu8k_outw(emu8k_t *emu8k, uint16_t addr, uint16_t val); + +uint8_t emu8k_inb(emu8k_t *emu8k, uint16_t addr); +void emu8k_outb(emu8k_t *emu8k, uint16_t addr, uint8_t val); + +void emu8k_render(emu8k_t *emu8k, int16_t *buf, size_t frames); + + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +#endif // EMU8K_H diff --git a/emu8k_internal.h b/emu8k_internal.h new file mode 100644 index 0000000..a8e3ea8 --- /dev/null +++ b/emu8k_internal.h @@ -0,0 +1,815 @@ +/* + * PCem - IBM PC emulator + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +/* + * Portions: + * VMusic - a VirtualBox extension pack with various music devices + * Copyright (C) 2022 Javier S. Pedro + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#ifndef _EMU8K_INTERNAL_H_ +#define _EMU8K_INTERNAL_H_ + +#include <stdint.h> + +#define MAXSOUNDBUFLEN (48000 / 10) + +#define BLOCK_SIZE_WORDS 0x10000 + +/* All these defines are in samples, not in bytes. */ +#define EMU8K_MEM_ADDRESS_MASK 0xFFFFFF +#define EMU8K_RAM_MEM_START 0x200000 +#define EMU8K_FM_MEM_ADDRESS 0xFFFFE0 +#define EMU8K_RAM_POINTERS_MASK 0x3F +#define EMU8K_LFOCHORUS_SIZE 0x4000 +/* + * Everything in this file assumes little endian + */ +/* used for the increment of oscillator position*/ +typedef struct emu8k_mem_internal_t { + union { + uint64_t addr; + struct { + uint16_t fract_lw_address; + uint16_t fract_address; + uint32_t int_address; + }; + }; +} emu8k_mem_internal_t; + +/* used for access to ram pointers from oscillator position. */ +typedef struct emu8k_mem_pointers_t { + union { + uint32_t addr; + struct { + uint16_t lw_address; + uint8_t hb_address; + uint8_t unused_address; + }; + }; +} emu8k_mem_pointers_t; + +/* + * From the Soundfount 2.0 fileformat Spec.: + * + An envelope generates a control signal in six phases. + When key-on occurs, a delay period begins during which the envelope value is zero. + The envelope then rises in a convex curve to a value of one during the attack phase. + " Note that the attack is convex; the curve is nominally such that when applied to a + decibel or semitone parameter, the result is linear in amplitude or Hz respectively" + + When a value of one is reached, the envelope enters a hold phase during which it remains at one. + When the hold phase ends, the envelope enters a decay phase during which its value decreases linearly to a sustain level. + " For the Volume Envelope, the decay phase linearly ramps toward the sustain level, causing a constant dB change for each time unit. " + When the sustain level is reached, the envelope enters sustain phase, during which the envelope stays at the sustain level. + + Whenever a key-off occurs, the envelope immediately enters a release phase during which the value linearly ramps from the current value to zero. + " For the Volume Envelope, the release phase linearly ramps toward zero from the current level, causing a constant dB change for each time unit" + + When zero is reached, the envelope value remains at zero. + + Modulation of pitch and filter cutoff are in octaves, semitones, and cents. + These parameters can be modulated to varying degree, either positively or negatively, by the modulation envelope. + The degree of modulation is specified in cents for the full-scale attack peak. + + The volume envelope operates in dB, with the attack peak providing a full scale output, appropriately scaled by the initial volume. + The zero value, however, is actually zero gain. + The implementation in the EMU8000 provides for 96 dB of amplitude control. + When 96 dB of attenuation is reached in the final gain amplifier, an abrupt jump to zero gain + (infinite dB of attenuation) occurs. In a 16-bit system, this jump is inaudible +*/ +/* It seems that the envelopes don't really have a decay/release stage, + * but instead they have a volume ramper that can be triggered + * automatically (after hold period), or manually (by activating release) + * and the "sustain" value is the target of any of both cases. + * Some programs like cubic player and AWEAmp use this, and it was + * described in the following way in Vince Vu/Judge Dredd's awe32p10.txt: + * If the MSB (most significant bit or bit 15) of this register is set, + * the Decay/Release will begin immediately, overriding the Delay, Attack, + * and Hold. Otherwise the Decay/Release will wait until the Delay, Attack, + * and Hold are finished. If you set the MSB of this register, you can use + * it as a volume ramper, as on the GUS. The upper byte (except the MSB), + * contains the destination volume, and the lower byte contains the ramp time. + */ + +/* attack_amount is linear amplitude (added directly to value). + * ramp_amount_db is linear dB (added directly to value too, but needs conversion to get linear amplitude). + * value range is 21bits for both, linear amplitude being 1<<21 = 0dBFS and 0 = -96dBFS (which is shortcut to silence), + * and db amplutide being 0 = 0dBFS and -(1<<21) = -96dBFS (which is shortcut to silence). + * This allows to operate db values by simply adding them. + */ +typedef struct emu8k_envelope_t { + int state; + int32_t delay_samples, hold_samples, attack_samples; + int32_t value_amp_hz, value_db_oct; + int32_t sustain_value_db_oct; + int32_t attack_amount_amp_hz, ramp_amount_db_oct; +} emu8k_envelope_t; + + + +typedef struct emu8k_chorus_eng_t { + int32_t write; + int32_t feedback; + int32_t delay_samples_central; + double lfodepth_multip; + double delay_offset_samples_right; + emu8k_mem_internal_t lfo_inc; + emu8k_mem_internal_t lfo_pos; + + int32_t chorus_left_buffer[EMU8K_LFOCHORUS_SIZE]; + int32_t chorus_right_buffer[EMU8K_LFOCHORUS_SIZE]; + +} emu8k_chorus_eng_t; + +/* 32 * 242. 32 comes from the "right" room resso case.*/ +#define MAX_REFL_SIZE 7744 + + +/* Reverb parameters description, extracted from AST sources. + Mix level + Decay + Link return amp + Link type Switches between normal or panned + Room reso ( ms) L&R (Ref 6 +1) + Ref 1 x2 (11 ms)R + Ref 2 x4 (22 ms)R + Ref 3 x8 (44 ms)L + Ref 4 x13(71 ms)R + Ref 5 x19(105ms)L + Ref 6 x ( ms)R (multiplier changes with room reso) + Ref 1-6 filter L&R + Ref 1-6 amp L&R + Ref 1 feedback L&R + Ref 2 feedback L&R + Ref 3 feedback L&R + Ref 4 feedback L&R + Ref 5 feedback L&R + Ref 6 feedback L&R +*/ +typedef struct emu8k_reverb_combfilter_t { + int read_pos; + int32_t reflection[MAX_REFL_SIZE]; + float output_gain; + float feedback; + float damp1; + float damp2; + int bufsize; + int32_t filterstore; +} emu8k_reverb_combfilter_t; + +typedef struct emu8k_reverb_eng_t { + + int16_t out_mix; + int16_t link_return_amp; /* tail part output gain ? */ + int8_t link_return_type; + + uint8_t refl_in_amp; + + emu8k_reverb_combfilter_t reflections[6]; + emu8k_reverb_combfilter_t allpass[8]; + emu8k_reverb_combfilter_t tailL; + emu8k_reverb_combfilter_t tailR; + + emu8k_reverb_combfilter_t damper; +} emu8k_reverb_eng_t; + +typedef struct emu8k_slide_t { + int32_t last; +} emu8k_slide_t; + + +typedef struct emu8k_voice_t +{ + union { + uint32_t cpf; + struct { + uint16_t cpf_curr_frac_addr; /* fractional part of the playing cursor. */ + uint16_t cpf_curr_pitch; /* 0x4000 = no shift. Linear increment */ + }; + }; + union { + uint32_t ptrx; + struct { + uint8_t ptrx_pan_aux; + uint8_t ptrx_revb_send; + uint16_t ptrx_pit_target; /* target pitch to which slide at curr_pitch speed. */ + }; + }; + union { + uint32_t cvcf; + struct { + uint16_t cvcf_curr_filt_ctoff; + uint16_t cvcf_curr_volume; + }; + }; + emu8k_slide_t volumeslide; + union { + uint32_t vtft; + struct { + uint16_t vtft_filter_target; + uint16_t vtft_vol_target; /* written to by the envelope engine. */ + }; + }; + /* These registers are used at least by the Windows drivers, and seem to be resetting + * something, similarly to targets and current, but... of what? + * what is curious is that if they are already zero, they are not written to, so it really + * looks like they are information about the status of the channel. (lfo position maybe?) */ + uint32_t unknown_data0_4; + uint32_t unknown_data0_5; + union { + uint32_t psst; + struct { + uint16_t psst_lw_address; + uint8_t psst_hw_address; + uint8_t psst_pan; + }; + #define PSST_LOOP_START_MASK 0x00FFFFFF /* In samples, i.e. uint16_t array[BOARD_RAM/2]; */ + }; + union { + uint32_t csl; + struct { + uint16_t csl_lw_address; + uint8_t csl_hw_address; + uint8_t csl_chor_send; + }; + #define CSL_LOOP_END_MASK 0x00FFFFFF /* In samples, i.e. uint16_t array[BOARD_RAM/2]; */ + }; + union { + uint32_t ccca; + struct { + uint16_t ccca_lw_addr; + uint8_t ccca_hb_addr; + uint8_t ccca_qcontrol; + }; + }; + #define CCCA_FILTQ_GET(ccca) (ccca>>28) + #define CCCA_FILTQ_SET(ccca,q) ccca = (ccca&0x0FFFFFFF) | (q<<28) + /* Bit 27 should always be zero */ + #define CCCA_DMA_ACTIVE(ccca) (ccca&0x04000000) + #define CCCA_DMA_WRITE_MODE(ccca) (ccca&0x02000000) + #define CCCA_DMA_WRITE_RIGHT(ccca) (ccca&0x01000000) + + uint16_t envvol; + #define ENVVOL_NODELAY(envol) (envvol&0x8000) + /* Verified with a soundfont bank. 7FFF is the minimum delay time, and 0 is the max delay time */ + #define ENVVOL_TO_EMU_SAMPLES(envvol) (envvol&0x8000) ? 0 : ((0x8000-(envvol&0x7FFF)) <<5) + + uint16_t dcysusv; + #define DCYSUSV_IS_RELEASE(dcysusv) (dcysusv&0x8000) + #define DCYSUSV_GENERATOR_ENGINE_ON(dcysusv) !(dcysusv&0x0080) + #define DCYSUSV_SUSVALUE_GET(dcysusv) ((dcysusv>>8)&0x7F) + /* Inverting the range compared to documentation because the envelope runs from 0dBFS = 0 to -96dBFS = (1 <<21) */ + #define DCYSUSV_SUS_TO_ENV_RANGE(susvalue) (((0x7F-susvalue) << 21)/0x7F) + #define DCYSUSV_DECAYRELEASE_GET(dcysusv) (dcysusv&0x7F) + + uint16_t envval; + #define ENVVAL_NODELAY(enval) (envval&0x8000) + /* Verified with a soundfont bank. 7FFF is the minimum delay time, and 0 is the max delay time */ + #define ENVVAL_TO_EMU_SAMPLES(envval)(envval&0x8000) ? 0 : ((0x8000-(envval&0x7FFF)) <<5) + + uint16_t dcysus; + #define DCYSUS_IS_RELEASE(dcysus) (dcysus&0x8000) + #define DCYSUS_SUSVALUE_GET(dcysus) ((dcysus>>8)&0x7F) + #define DCYSUS_SUS_TO_ENV_RANGE(susvalue) ((susvalue << 21)/0x7F) + #define DCYSUS_DECAYRELEASE_GET(dcysus) (dcysus&0x7F) + + uint16_t atkhldv; + #define ATKHLDV_TRIGGER(atkhldv) !(atkhldv&0x8000) + #define ATKHLDV_HOLD(atkhldv) ((atkhldv>>8)&0x7F) + #define ATKHLDV_HOLD_TO_EMU_SAMPLES(atkhldv) (4096*(0x7F-((atkhldv>>8)&0x7F))) + #define ATKHLDV_ATTACK(atkhldv) (atkhldv&0x7F) + + uint16_t lfo1val, lfo2val; + #define LFOxVAL_NODELAY(lfoxval) (lfoxval&0x8000) + #define LFOxVAL_TO_EMU_SAMPLES(lfoxval) (lfoxval&0x8000) ? 0 : ((0x8000-(lfoxval&0x7FFF)) <<5) + + uint16_t atkhld; + #define ATKHLD_TRIGGER(atkhld) !(atkhld&0x8000) + #define ATKHLD_HOLD(atkhld) ((atkhld>>8)&0x7F) + #define ATKHLD_HOLD_TO_EMU_SAMPLES(atkhld) (4096*(0x7F-((atkhld>>8)&0x7F))) + #define ATKHLD_ATTACK(atkhld) (atkhld&0x7F) + + + uint16_t ip; + #define INTIAL_PITCH_CENTER 0xE000 + #define INTIAL_PITCH_OCTAVE 0x1000 + + union { + uint16_t ifatn; + struct{ + uint8_t ifatn_attenuation; + uint8_t ifatn_init_filter; + }; + }; + union { + uint16_t pefe; + struct { + int8_t pefe_modenv_filter_height; + int8_t pefe_modenv_pitch_height; + }; + }; + union { + uint16_t fmmod; + struct { + int8_t fmmod_lfo1_filt_mod; + int8_t fmmod_lfo1_vibrato; + }; + }; + union { + uint16_t tremfrq; + struct { + uint8_t tremfrq_lfo1_freq; + int8_t tremfrq_lfo1_tremolo; + }; + }; + union { + uint16_t fm2frq2; + struct { + uint8_t fm2frq2_lfo2_freq; + int8_t fm2frq2_lfo2_vibrato; + }; + }; + + int env_engine_on; + + emu8k_mem_internal_t addr, loop_start, loop_end; + + int32_t initial_att; + int32_t initial_filter; + + emu8k_envelope_t vol_envelope; + emu8k_envelope_t mod_envelope; + + int64_t lfo1_speed, lfo2_speed; + emu8k_mem_internal_t lfo1_count, lfo2_count; + int32_t lfo1_delay_samples, lfo2_delay_samples; + int vol_l, vol_r; + + int16_t fixed_modenv_filter_height; + int16_t fixed_modenv_pitch_height; + int16_t fixed_lfo1_filt_mod; + int16_t fixed_lfo1_vibrato; + int16_t fixed_lfo1_tremolo; + int16_t fixed_lfo2_vibrato; + + /* filter internal data. */ + int filterq_idx; + int32_t filt_att; + int64_t filt_buffer[5]; + +} emu8k_voice_t; + +typedef struct emu8k_t +{ + emu8k_voice_t voice[32]; + + uint16_t hwcf1, hwcf2, hwcf3; + uint32_t hwcf4, hwcf5, hwcf6, hwcf7; + + uint16_t init1[32], init2[32], init3[32], init4[32]; + + uint32_t smalr, smarr, smalw, smarw; + uint16_t smld_buffer, smrd_buffer; + + uint16_t wc; + + uint16_t id; + + /* The empty block is used to act as an unallocated memory returning zero. */ + int16_t *ram, *rom, *empty; + + /* RAM pointers are a way to avoid checking ram boundaries on read */ + int16_t *ram_pointers[0x100]; + uint32_t ram_end_addr; + + int cur_reg, cur_voice; + + int16_t out_l, out_r; + + emu8k_chorus_eng_t chorus_engine; + int32_t chorus_in_buffer[MAXSOUNDBUFLEN]; + emu8k_reverb_eng_t reverb_engine; + int32_t reverb_in_buffer[MAXSOUNDBUFLEN]; + + int pos; + int32_t buffer[MAXSOUNDBUFLEN * 2]; +} emu8k_t; + + + +/* + +Section E - Introduction to the EMU8000 Chip + + The EMU8000 has its roots in E-mu's Proteus sample playback + modules and their renowned Emulator sampler. The EMU8000 has + 32 individual oscillators, each playing back at 44.1 kHz. By + incorporating sophisticated sample interpolation algorithms + and digital filtering, the EMU8000 is capable of producing + high fidelity sample playback. + + The EMU8000 has an extensive modulation capability using two + sine-wave LFOs (Low Frequency Oscillator) and two multi- + stage envelope generators. + + What exactly does modulation mean? Modulation means to + dynamically change a parameter of an audio signal, whether + it be the volume (amplitude modulation, or tremolo), pitch + (frequency modulation, or vibrato) or filter cutoff + frequency (filter modulation, or wah-wah). To modulate + something we would require a modulation source, and a + modulation destination. In the EMU8000, the modulation + sources are the LFOs and the envelope generators, and the + modulation destinations can be the pitch, the volume or the + filter cutoff frequency. + + The EMU8000's LFOs and envelope generators provide a complex + modulation environment. Each sound producing element of the + EMU8000 consists of a resonant low-pass filter, two LFOs, in + which one modulates the pitch (LFO2), and the other + modulates pitch, filter cutoff and volume (LFO1) + simultaneously. There are two envelope generators; envelope + 1 contours both pitch and filter cutoff simultaneously, and + envelope 2 contours volume. The output stage consists of an + effects engine that mixes the dry signals with the + Reverb/chorus level signals to produce the final mix. + + What are the EMU8000 sound elements? + + Each of the sound elements in an EMU8000 consists of the + following: + + Oscillator + An oscillator is the source of an audio signal. + + Low Pass Filter + The low pass filter is responsible for modifying the + timbres of an instrument. The low pass filter's filter + cutoff values can be varied from 100 Hz to 8000 Hz. By + changing the values of the filter cutoff, a myriad of + analogue sounding filter sweeps can be achieved. An + example of a GM instrument that makes use of filter sweep + is instrument number 87, Lead 7 (fifths). + + Amplifier + The amplifier determines the loudness of an audio signal. + + LFO1 + An LFO, or Low Frequency Oscillator, is normally used to + periodically modulate, that is, change a sound parameter, + whether it be volume (amplitude modulation), pitch + (frequency modulation) or filter cutoff (filter + modulation). It operates at sub-audio frequency from + 0.042 Hz to 10.71 Hz. The LFO1 in the EMU8000 modulates + the pitch, volume and filter cutoff simultaneously. + + LFO2 + The LFO2 is similar to the LFO1, except that it modulates + the pitch of the audio signal only. + + Resonance + A filter alone would be like an equalizer, making a + bright audio signal duller, but the addition of resonance + greatly increases the creative potential of a filter. + Increasing the resonance of a filter makes it emphasize + signals at the cutoff frequency, giving the audio signal + a subtle wah-wah, that is, imagine a siren sound going + from bright to dull to bright again periodically. + + LFO1 to Volume (Tremolo) + The LFO1's output is routed to the amplifier, with the + depth of oscillation determined by LFO1 to Volume. LFO1 + to Volume produces tremolo, which is a periodic + fluctuation of volume. Lets say you are listening to a + piece of music on your home stereo system. When you + rapidly increase and decrease the playback volume, you + are creating tremolo effect, and the speed in which you + increases and decreases the volume is the tremolo rate + (which corresponds to the speed at which the LFO is + oscillating). An example of a GM instrument that makes + use of LFO1 to Volume is instrument number 45, Tremolo + Strings. + + LFO1 to Filter Cutoff (Wah-Wah) + The LFO1's output is routed to the filter, with the depth + of oscillation determined by LFO1 to Filter. LFO1 to + Filter produces a periodic fluctuation in the filter + cutoff frequency, producing an effect very similar to + that of a wah-wah guitar (see resonance for a description + of wah-wah) An example of a GM instrument that makes + use of LFO1 to Filter Cutoff is instrument number 19, + Rock Organ. + + LFO1 to Pitch (Vibrato) + The LFO1's output is routed to the oscillator, with the + depth of oscillation determined by LFO1 to Pitch. LFO1 to + Pitch produces a periodic fluctuation in the pitch of the + oscillator, producing a vibrato effect. An example of a + GM instrument that makes use of LFO1 to Pitch is + instrument number 57, Trumpet. + + LFO2 to Pitch (Vibrato) + The LFO1 in the EMU8000 can simultaneously modulate + pitch, volume and filter. LFO2, on the other hand, + modulates only the pitch, with the depth of modulation + determined by LFO2 to Pitch. LFO2 to Pitch produces a + periodic fluctuation in the pitch of the oscillator, + producing a vibrato effect. When this is coupled with + LFO1 to Pitch, a complex vibrato effect can be achieved. + + Volume Envelope + The character of a musical instrument is largely + determined by its volume envelope, the way in which the + level of the sound changes with time. For example, + percussive sounds usually start suddenly and then die + away, whereas a bowed sound might take quite some time to + start and then sustain at a more or less fixed level. + + A six-stage envelope makes up the volume envelope of the + EMU8000. The six stages are delay, attack, hold, decay, + sustain and release. The stages can be described as + follows: + + Delay The time between when a key is played and when + the attack phase begins + Attack The time it takes to go from zero to the peak + (full) level. + Hold The time the envelope will stay at the peak + level before starting the decay phase. + Decay The time it takes the envelope to go from the + peak level to the sustain level. + Sustain The level at which the envelope remains as long + as a key is held down. + Release The time it takes the envelope to fall to the + zero level after the key is released. + + Using these six parameters can yield very realistic + reproduction of the volume envelope characteristics of + many musical instruments. + + Pitch and Filter Envelope + The pitch and filter envelope is similar to the volume + envelope in that it has the same envelope stages. The + difference between them is that whereas the volume + envelope contours the volume of the instrument over time, + the pitch and filter envelope contours the pitch and + filter values of the instrument over time. The pitch + envelope is particularly useful in putting the finishing + touches in simulating a natural instrument. For example, + some wind instruments tend to go slightly sharp when they + are first blown, and this characteristic can be simulated + by setting up a pitch envelope with a fairly fast attack + and decay. The filter envelope, on the other hand, is + useful in creating synthetic sci-fi sound textures. An + example of a GM instrument that makes use of the filter + envelope is instrument number 86, Pad 8 (Sweep). + + Pitch/Filter Envelope Modulation + These two parameters determine the modulation depth of + the pitch and filter envelope. In the wind instrument + example above, a small amount of pitch envelope + modulation is desirable to simulate its natural pitch + characteristics. + + This rich modulation capability of the EMU8000 is fully + exploited by the SB AWE32 MIDI drivers. The driver also + provides you with a means to change these parameters over + MIDI in real time. Refer to the section "How do I change an + instrument's sound parameter in real time" for more + information. + + + + + Room 1 - 3 + This group of reverb variation simulates the natural + ambiance of a room. Room 1 simulates a small room, Room 2 + simulates a slightly bigger room, and Room 3 simulates a + big room. + + Hall 1 - 2 + This group of reverb variation simulates the natural + ambiance of a concert hall. It has greater depth than the + room variations. Again, Hall 1 simulates a small hall, + and Hall 2 simulates a larger hall. + + Plate + Back in the old days, reverb effects were sometimes + produced using a metal plate, and this type of reverb + produces a metallic echo. The SB AWE32's Plate variation + simulates this form of reverb. + + Delay + This reverb produces a delay, that is, echo effect. + + Panning Delay + This reverb variation produces a delay effect that is + continuously panned left and right. + + Chorus 1 - 4 + Chorus produces a "beating" effect. The chorus effects + are more prominent going from chorus 1 to chorus 4. + + Feedback Chorus + This chorus variation simulates a soft "swishing" effect. + + Flanger + This chorus variation produces a more prominent feedback + chorus effect. + + Short Delay + This chorus variation simulates a delay repeated in a + short time. + + Short Delay (feed back) + This chorus variation simulates a short delay repeated + (feedback) many times. + + + +Registers to write the Chorus Parameters to (all are 16-bit, unless noted): +(codified as in register,port,voice. port 0=0x620, 2=0x622, 4=0xA20, 6=0xA22, 8=0xE20) +( 3409 = register 3, port A20, voice 9) + +0x3409 +0x340C +0x3603 +0x1409 (32-Bit) +0x140A (32-Bit) +then write 0x8000 to 0x140D (32-Bit) +and then 0x0000 to 0x140E (32-Bit) + +Chorus Parameters: + +Chorus 1 Chorus 2 Chorus 3 Chorus 4 Feedback Flanger + +0xE600 0xE608 0xE610 0xE620 0xE680 0xE6E0 +0x03F6 0x031A 0x031A 0x0269 0x04D3 0x044E +0xBC2C 0xBC6E 0xBC84 0xBC6E 0xBCA6 0xBC37 +0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 +0x006D 0x017C 0x0083 0x017C 0x005B 0x0026 + +Short Delay Short Delay + Feedback + +0xE600 0xE6C0 +0x0B06 0x0B06 +0xBC00 0xBC00 +0xE000 0xE000 +0x0083 0x0083 + +// Chorus Params +typedef struct { + WORD FbkLevel; // Feedback Level (0xE600-0xE6FF) + WORD Delay; // Delay (0-0x0DA3) [1/44100 sec] + WORD LfoDepth; // LFO Depth (0xBC00-0xBCFF) + DWORD DelayR; // Right Delay (0-0xFFFFFFFF) [1/256/44100 sec] + DWORD LfoFreq; // LFO Frequency (0-0xFFFFFFFF) + } CHORUS_TYPE; + + +Registers to write the Reverb Parameters to (they are all 16-bit): +(codified as in register,port,voice. port 0=0x620, 2=0x622, 4=0xA20, 6=0xA22, 8=0xE20) +( 3409 = register 3, port A20, voice 9) + +0x2403,0x2405,0x361F,0x2407,0x2614,0x2616,0x240F,0x2417, +0x241F,0x2607,0x260F,0x2617,0x261D,0x261F,0x3401,0x3403, +0x2409,0x240B,0x2411,0x2413,0x2419,0x241B,0x2601,0x2603, +0x2609,0x260B,0x2611,0x2613 + +Reverb Parameters: + +Room 1: + +0xB488,0xA450,0x9550,0x84B5,0x383A,0x3EB5,0x72F4,0x72A4, +0x7254,0x7204,0x7204,0x7204,0x4416,0x4516,0xA490,0xA590, +0x842A,0x852A,0x842A,0x852A,0x8429,0x8529,0x8429,0x8529, +0x8428,0x8528,0x8428,0x8528 + +Room 2: + +0xB488,0xA458,0x9558,0x84B5,0x383A,0x3EB5,0x7284,0x7254, +0x7224,0x7224,0x7254,0x7284,0x4448,0x4548,0xA440,0xA540, +0x842A,0x852A,0x842A,0x852A,0x8429,0x8529,0x8429,0x8529, +0x8428,0x8528,0x8428,0x8528 + +Room 3: + +0xB488,0xA460,0x9560,0x84B5,0x383A,0x3EB5,0x7284,0x7254, +0x7224,0x7224,0x7254,0x7284,0x4416,0x4516,0xA490,0xA590, +0x842C,0x852C,0x842C,0x852C,0x842B,0x852B,0x842B,0x852B, +0x842A,0x852A,0x842A,0x852A + +Hall 1: + +0xB488,0xA470,0x9570,0x84B5,0x383A,0x3EB5,0x7284,0x7254, +0x7224,0x7224,0x7254,0x7284,0x4448,0x4548,0xA440,0xA540, +0x842B,0x852B,0x842B,0x852B,0x842A,0x852A,0x842A,0x852A, +0x8429,0x8529,0x8429,0x8529 + +Hall 2: + +0xB488,0xA470,0x9570,0x84B5,0x383A,0x3EB5,0x7254,0x7234, +0x7224,0x7254,0x7264,0x7294,0x44C3,0x45C3,0xA404,0xA504, +0x842A,0x852A,0x842A,0x852A,0x8429,0x8529,0x8429,0x8529, +0x8428,0x8528,0x8428,0x8528 + +Plate: + +0xB4FF,0xA470,0x9570,0x84B5,0x383A,0x3EB5,0x7234,0x7234, +0x7234,0x7234,0x7234,0x7234,0x4448,0x4548,0xA440,0xA540, +0x842A,0x852A,0x842A,0x852A,0x8429,0x8529,0x8429,0x8529, +0x8428,0x8528,0x8428,0x8528 + +Delay: + +0xB4FF,0xA470,0x9500,0x84B5,0x333A,0x39B5,0x7204,0x7204, +0x7204,0x7204,0x7204,0x72F4,0x4400,0x4500,0xA4FF,0xA5FF, +0x8420,0x8520,0x8420,0x8520,0x8420,0x8520,0x8420,0x8520, +0x8420,0x8520,0x8420,0x8520 + +Panning Delay: + +0xB4FF,0xA490,0x9590,0x8474,0x333A,0x39B5,0x7204,0x7204, +0x7204,0x7204,0x7204,0x72F4,0x4400,0x4500,0xA4FF,0xA5FF, +0x8420,0x8520,0x8420,0x8520,0x8420,0x8520,0x8420,0x8520, +0x8420,0x8520,0x8420,0x8520 + +Registers to write the EQ Parameters to (16-Bit): +(codified as in register,port,voice. port 0=0x620, 2=0x622, 4=0xA20, 6=0xA22, 8=0xE20) +( 3409 = register 3, port A20, voice 9) + +Bass: + +0x3601 +0x3611 + +Treble: + +0x3411 +0x3413 +0x341B +0x3607 +0x360B +0x360D +0x3617 +0x3619 + +Total: + +write the 0x0263 + 3rd parameter of the Bass EQ + 9th parameter of Treble EQ to 0x3615. +write the 0x8363 + 3rd parameter of the Bass EQ + 9th parameter of Treble EQ to 0x3615. + + +Bass Parameters: + +0: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: + +0xD26A 0xD25B 0xD24C 0xD23D 0xD21F 0xC208 0xC219 0xC22A 0xC24C 0xC26E 0xC248 0xC26A +0xD36A 0xD35B 0xD34C 0xD33D 0xC31F 0xC308 0xC308 0xC32A 0xC34C 0xC36E 0xC384 0xC36A +0x0000 0x0000 0x0000 0x0000 0x0000 0x0001 0x0001 0x0001 0x0001 0x0001 0x0002 0x0002 + +Treble Parameters: + +0: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: +0x821E 0x821E 0x821E 0x821E 0x821E 0x821E 0x821E 0x821E 0x821E 0x821E 0x821D 0x821C +0xC26A 0xC25B 0xC24C 0xC23D 0xC21F 0xD208 0xD208 0xD208 0xD208 0xD208 0xD219 0xD22A +0x031E 0x031E 0x031E 0x031E 0x031E 0x031E 0x031E 0x031E 0x031E 0x031E 0x031D 0x031C +0xC36A 0xC35B 0xC34C 0xC33D 0xC31F 0xD308 0xD308 0xD308 0xD308 0xD308 0xD319 0xD32A +0x021E 0x021E 0x021E 0x021E 0x021E 0x021E 0x021D 0x021C 0x021A 0x0219 0x0219 0x0219 +0xD208 0xD208 0xD208 0xD208 0xD208 0xD208 0xD219 0xD22A 0xD24C 0xD26E 0xD26E 0xD26E +0x831E 0x831E 0x831E 0x831E 0x831E 0x831E 0x831D 0x831C 0x831A 0x8319 0x8319 0x8319 +0xD308 0xD308 0xD308 0xD308 0xD308 0xD308 0xD3019 0xD32A 0xD34C 0xD36E 0xD36E 0xD36E +0x0001 0x0001 0x0001 0x0001 0x0001 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 +*/ + +#endif /* _SOUND_EMU8K_H_ */ |